These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 27809641)

  • 1. Modeling uptake of nanoparticles in multiple human cells using structure-activity relationships and intercellular uptake correlations.
    Basant N; Gupta S
    Nanotoxicology; 2017 Feb; 11(1):20-30. PubMed ID: 27809641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. QSAR modeling for predicting mutagenic toxicity of diverse chemicals for regulatory purposes.
    Basant N; Gupta S
    Environ Sci Pollut Res Int; 2017 Jun; 24(16):14430-14444. PubMed ID: 28435990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cytotoxicity of nanomaterials: Modeling multiple human cells uptake of functionalized magneto-fluorescent nanoparticles via nano-QSAR.
    Qi R; Pan Y; Cao J; Jia Z; Jiang J
    Chemosphere; 2020 Jun; 249():126175. PubMed ID: 32078856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nano-quantitative structure-activity relationship modeling using easily computable and interpretable descriptors for uptake of magnetofluorescent engineered nanoparticles in pancreatic cancer cells.
    Kar S; Gajewicz A; Puzyn T; Roy K
    Toxicol In Vitro; 2014 Jun; 28(4):600-6. PubMed ID: 24412539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative structure-activity relationships for cellular uptake of surface-modified nanoparticles.
    Liu R; Rallo R; Bilal M; Cohen Y
    Comb Chem High Throughput Screen; 2015; 18(4):365-75. PubMed ID: 25747434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the toxicity of nanoparticles: a unified in silico machine learning model based on perturbation theory.
    Concu R; Kleandrova VV; Speck-Planche A; Cordeiro MNDS
    Nanotoxicology; 2017 Sep; 11(7):891-906. PubMed ID: 28937298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward comprehension of multiple human cells uptake of engineered nano metal oxides: quantitative inter cell line uptake specificity (QICLUS) modeling.
    Ojha PK; Kar S; Roy K; Leszczynski J
    Nanotoxicology; 2019 Feb; 13(1):14-34. PubMed ID: 30354872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A three-tier QSAR modeling strategy for estimating eye irritation potential of diverse chemicals in rabbit for regulatory purposes.
    Basant N; Gupta S; Singh KP
    Regul Toxicol Pharmacol; 2016 Jun; 77():282-91. PubMed ID: 27018829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational tool for risk assessment of nanomaterials: novel QSTR-perturbation model for simultaneous prediction of ecotoxicity and cytotoxicity of uncoated and coated nanoparticles under multiple experimental conditions.
    Kleandrova VV; Luan F; González-Díaz H; Ruso JM; Speck-Planche A; Cordeiro MN
    Environ Sci Technol; 2014 Dec; 48(24):14686-94. PubMed ID: 25384130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The application of QSAR approaches to nanoparticles.
    Ehret J; Vijver M; Peijnenburg W
    Altern Lab Anim; 2014 Mar; 42(1):43-50. PubMed ID: 24773487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. QSAR modeling for predicting reproductive toxicity of chemicals in rats for regulatory purposes.
    Basant N; Gupta S; Singh KP
    Toxicol Res (Camb); 2016 Jul; 5(4):1029-1038. PubMed ID: 30090410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multispecies QSAR modeling for predicting the aquatic toxicity of diverse organic chemicals for regulatory toxicology.
    Singh KP; Gupta S; Kumar A; Mohan D
    Chem Res Toxicol; 2014 May; 27(5):741-53. PubMed ID: 24738471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-target QSTR modeling for simultaneous prediction of multiple toxicity endpoints of nano-metal oxides.
    Basant N; Gupta S
    Nanotoxicology; 2017 Apr; 11(3):339-350. PubMed ID: 28277981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developing Enhanced Blood-Brain Barrier Permeability Models: Integrating External Bio-Assay Data in QSAR Modeling.
    Wang W; Kim MT; Sedykh A; Zhu H
    Pharm Res; 2015 Sep; 32(9):3055-65. PubMed ID: 25862462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. QSAR as a random event: modeling of nanoparticles uptake in PaCa2 cancer cells.
    Toropov AA; Toropova AP; Puzyn T; Benfenati E; Gini G; Leszczynska D; Leszczynski J
    Chemosphere; 2013 Jun; 92(1):31-7. PubMed ID: 23566368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mathematical modeling of cytotoxicity of metal oxide nanoparticles using the index of ideality correlation criteria.
    Ahmadi S
    Chemosphere; 2020 Mar; 242():125192. PubMed ID: 31677509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uptake kinetics and nanotoxicity of silica nanoparticles are cell type dependent.
    Blechinger J; Bauer AT; Torrano AA; Gorzelanny C; Bräuchle C; Schneider SW
    Small; 2013 Dec; 9(23):3970-80, 3906. PubMed ID: 23681841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epidermal Growth Factor Enhances Cellular Uptake of Polystyrene Nanoparticles by Clathrin-Mediated Endocytosis.
    Phuc LTM; Taniguchi A
    Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28629179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monosaccharides versus PEG-functionalized NPs: influence in the cellular uptake.
    Moros M; Hernáez B; Garet E; Dias JT; Sáez B; Grazú V; González-Fernández A; Alonso C; de la Fuente JM
    ACS Nano; 2012 Feb; 6(2):1565-77. PubMed ID: 22214244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoparticles: cellular uptake and cytotoxicity.
    Adjei IM; Sharma B; Labhasetwar V
    Adv Exp Med Biol; 2014; 811():73-91. PubMed ID: 24683028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.