These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 27809641)

  • 21. Nanoparticles: cellular uptake and cytotoxicity.
    Adjei IM; Sharma B; Labhasetwar V
    Adv Exp Med Biol; 2014; 811():73-91. PubMed ID: 24683028
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computational modeling in nanomedicine: prediction of multiple antibacterial profiles of nanoparticles using a quantitative structure-activity relationship perturbation model.
    Speck-Planche A; Kleandrova VV; Luan F; Cordeiro MN
    Nanomedicine (Lond); 2015 Jan; 10(2):193-204. PubMed ID: 25600965
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nano-QSAR Model for Predicting Cell Viability of Human Embryonic Kidney Cells.
    Manganelli S; Benfenati E
    Methods Mol Biol; 2017; 1601():275-290. PubMed ID: 28470534
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of cell size on cellular uptake of gold nanoparticles.
    Wang X; Hu X; Li J; Russe AC; Kawazoe N; Yang Y; Chen G
    Biomater Sci; 2016 Jun; 4(6):970-8. PubMed ID: 27095054
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of surface modification in BSA nanoparticles for uptake in cancer cells.
    Choi JS; Meghani N
    Colloids Surf B Biointerfaces; 2016 Sep; 145():653-661. PubMed ID: 27289306
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Andrographolide-loaded nanoparticles for brain delivery: Formulation, characterisation and in vitro permeability using hCMEC/D3 cell line.
    Guccione C; Oufir M; Piazzini V; Eigenmann DE; Jähne EA; Zabela V; Faleschini MT; Bergonzi MC; Smiesko M; Hamburger M; Bilia AR
    Eur J Pharm Biopharm; 2017 Oct; 119():253-263. PubMed ID: 28652141
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting toxic potencies of metal oxide nanoparticles by means of nano-QSARs.
    Mu Y; Wu F; Zhao Q; Ji R; Qie Y; Zhou Y; Hu Y; Pang C; Hristozov D; Giesy JP; Xing B
    Nanotoxicology; 2016 Nov; 10(9):1207-14. PubMed ID: 27309010
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanism study of cellular uptake and tight junction opening mediated by goblet cell-specific trimethyl chitosan nanoparticles.
    Zhang J; Zhu X; Jin Y; Shan W; Huang Y
    Mol Pharm; 2014 May; 11(5):1520-32. PubMed ID: 24673570
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Room-temperature and temperature-dependent QSRR modelling for predicting the nitrate radical reaction rate constants of organic chemicals using ensemble learning methods.
    Gupta S; Basant N; Mohan D; Singh KP
    SAR QSAR Environ Res; 2016 Jul; 27(7):539-58. PubMed ID: 27385532
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A generic model based on the properties of nanoparticles and cells for predicting cellular uptake.
    Lu B; Jan Hendriks A; Nolte TM
    Colloids Surf B Biointerfaces; 2022 Jan; 209(Pt 1):112155. PubMed ID: 34678608
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flotillin-involved uptake of silica nanoparticles and responses of an alveolar-capillary barrier in vitro.
    Kasper J; Hermanns MI; Bantz C; Utech S; Koshkina O; Maskos M; Brochhausen C; Pohl C; Fuchs S; Unger RE; Kirkpatrick CJ
    Eur J Pharm Biopharm; 2013 Jun; 84(2):275-87. PubMed ID: 23183446
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computer-aided nanotoxicology: assessing cytotoxicity of nanoparticles under diverse experimental conditions by using a novel QSTR-perturbation approach.
    Luan F; Kleandrova VV; González-Díaz H; Ruso JM; Melo A; Speck-Planche A; Cordeiro MN
    Nanoscale; 2014 Sep; 6(18):10623-30. PubMed ID: 25083742
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A semi-empirical model for transport of inorganic nanoparticles across a lipid bilayer: implications for uptake by living cells.
    Nolte TM; Kettler K; Meesters JA; Hendriks AJ; van de Meent D
    Environ Toxicol Chem; 2015 Mar; 34(3):488-96. PubMed ID: 25470256
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of blood protein adsorption on cellular uptake of anatase TiO2 nanoparticles.
    Allouni ZE; Gjerdet NR; Cimpan MR; Høl PJ
    Int J Nanomedicine; 2015; 10():687-95. PubMed ID: 25632230
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessment of prediction confidence and domain extrapolation of two structure-activity relationship models for predicting estrogen receptor binding activity.
    Tong W; Xie Q; Hong H; Shi L; Fang H; Perkins R
    Environ Health Perspect; 2004 Aug; 112(12):1249-54. PubMed ID: 15345371
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling the reactivities of hydroxyl radical and ozone towards atmospheric organic chemicals using quantitative structure-reactivity relationship approaches.
    Gupta S; Basant N; Mohan D; Singh KP
    Environ Sci Pollut Res Int; 2016 Jul; 23(14):14034-46. PubMed ID: 27040550
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Daphnia and fish toxicity of (benzo)triazoles: validated QSAR models, and interspecies quantitative activity-activity modelling.
    Cassani S; Kovarich S; Papa E; Roy PP; van der Wal L; Gramatica P
    J Hazard Mater; 2013 Aug; 258-259():50-60. PubMed ID: 23702385
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of rhodamine loaded PEG-g-PLA nanoparticles (NPs): effect of poly(ethylene glycol) grafting density.
    Essa S; Rabanel JM; Hildgen P
    Int J Pharm; 2011 Jun; 411(1-2):178-87. PubMed ID: 21458551
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computational ecotoxicology: simultaneous prediction of ecotoxic effects of nanoparticles under different experimental conditions.
    Kleandrova VV; Luan F; González-Díaz H; Ruso JM; Melo A; Speck-Planche A; Cordeiro MN
    Environ Int; 2014 Dec; 73():288-94. PubMed ID: 25173945
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Antitumor agents 252. Application of validated QSAR models to database mining: discovery of novel tylophorine derivatives as potential anticancer agents.
    Zhang S; Wei L; Bastow K; Zheng W; Brossi A; Lee KH; Tropsha A
    J Comput Aided Mol Des; 2007; 21(1-3):97-112. PubMed ID: 17340042
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.