These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 27810103)

  • 1. Development of zirconia nanoparticles-decorated calcium alginate hydrogel fibers for extraction of organophosphorous pesticides from water and juice samples: Facile synthesis and application with elimination of matrix effects.
    Zare M; Ramezani Z; Rahbar N
    J Chromatogr A; 2016 Nov; 1473():28-37. PubMed ID: 27810103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superparamagnetic core-shells anchored onto graphene oxide grafted with phenylethyl amine as a nano-adsorbent for extraction and enrichment of organophosphorus pesticides from fruit, vegetable and water samples.
    Mahpishanian S; Sereshti H; Baghdadi M
    J Chromatogr A; 2015 Aug; 1406():48-58. PubMed ID: 26129984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of a zinc-based metal-organic framework with histamine as an organic linker for the dispersive solid-phase extraction of organophosphorus pesticides in water and fruit juice samples.
    Amiri A; Tayebee R; Abdar A; Narenji Sani F
    J Chromatogr A; 2019 Jul; 1597():39-45. PubMed ID: 30922721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional graphene aerogel-supported iron oxide nanoparticles as an efficient adsorbent for magnetic solid phase extraction of organophosphorus pesticide residues in fruit juices followed by gas chromatographic determination.
    Mahpishanian S; Sereshti H
    J Chromatogr A; 2016 Apr; 1443():43-53. PubMed ID: 27018186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zero valent Fe-reduced graphene oxide quantum dots as a novel magnetic dispersive solid phase microextraction sorbent for extraction of organophosphorus pesticides in real water and fruit juice samples prior to analysis by gas chromatography-mass spectrometry.
    Akbarzade S; Chamsaz M; Rounaghi GH; Ghorbani M
    Anal Bioanal Chem; 2018 Jan; 410(2):429-439. PubMed ID: 29214538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium Alginate-Caged Multiwalled Carbon Nanotubes Dispersive Microsolid Phase Extraction Combined With Gas Chromatography-Flame Ionization Detection for the Determination of Polycyclic Aromatic Hydrocarbons in Water Samples.
    Abboud AS; Sanagi MM; Ibrahim WAW; Keyon ASA; Aboul-Enein HY
    J Chromatogr Sci; 2018 Feb; 56(2):177-186. PubMed ID: 29186451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-step green synthesis of β-cyclodextrin/iron oxide-reduced graphene oxide nanocomposite with high supramolecular recognition capability: Application for vortex-assisted magnetic solid phase extraction of organochlorine pesticides residue from honey samples.
    Mahpishanian S; Sereshti H
    J Chromatogr A; 2017 Feb; 1485():32-43. PubMed ID: 28104237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solvent-assisted dispersive liquid-solid phase extraction of organophosphorus pesticides using a polypyrrole thin film-coated porous composite magnetic sorbent prior to their determination with GC-MS/MS.
    Jullakan S; Bunkoed O; Pinsrithong S
    Mikrochim Acta; 2020 Nov; 187(12):677. PubMed ID: 33245436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical synthesis-free and facile preparation of magnetized polyethylene composite and its application as an efficient magnetic sorbent for some pesticides.
    Mohebbi A; Farajzadeh MA
    J Chromatogr A; 2020 Aug; 1625():461340. PubMed ID: 32709363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New magnetic graphene-based inorganic-organic sol-gel hybrid nanocomposite for simultaneous analysis of polar and non-polar organophosphorus pesticides from water samples using solid-phase extraction.
    Rashidi Nodeh H; Wan Ibrahim WA; Kamboh MA; Sanagi MM
    Chemosphere; 2017 Jan; 166():21-30. PubMed ID: 27681257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zirconium(IV) functionalized magnetic nanocomposites for extraction of organophosphorus pesticides from environmental water samples.
    Jiang L; Huang T; Feng S; Wang J
    J Chromatogr A; 2016 Jul; 1456():49-57. PubMed ID: 27328881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid Monitoring of Organochlorine Pesticide Residues in Various Fruit Juices and Water Samples Using Fabric Phase Sorptive Extraction and Gas Chromatography-Mass Spectrometry.
    Kaur R; Kaur R; Rani S; Malik AK; Kabir A; Furton KG; Samanidou VF
    Molecules; 2019 Mar; 24(6):. PubMed ID: 30871257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of magnetic dispersive solid phase extraction using toner powder as an efficient and economic sorbent in combination with dispersive liquid-liquid microextraction for extraction of some widely used pesticides in fruit juices.
    Farajzadeh MA; Mohebbi A
    J Chromatogr A; 2018 Jan; 1532():10-19. PubMed ID: 29174132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New magnetic oil palm fiber activated carbon-reinforced polypyrrole solid phase extraction combined with gas chromatography-electron capture detection for determination of organochlorine pesticides in water samples.
    Marsin FM; Wan Ibrahim WA; Nodeh HR; Sanagi MM
    J Chromatogr A; 2020 Feb; 1612():460638. PubMed ID: 31676087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic solid phase extraction sorbents using methyl-parathion and quinalphos dual-template imprinted polymers coupled with GC-MS for class-selective extraction of twelve organophosphorus pesticides.
    Liu L; Yang M; He M; Liu T; Chen F; Li Y; Feng X; Zhang Y; Zhang F
    Mikrochim Acta; 2020 Aug; 187(9):503. PubMed ID: 32812169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic solid-phase extraction using poly(para-phenylenediamine) modified with magnetic nanoparticles as adsorbent for analysis of monocyclic aromatic amines in water and urine samples.
    Amiri A; Baghayeri M; Nori S
    J Chromatogr A; 2015 Oct; 1415():20-6. PubMed ID: 26341590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultra-preconcentration and determination of thirteen organophosphorus pesticides in water samples using solid-phase extraction followed by dispersive liquid-liquid microextraction and gas chromatography with flame photometric detection.
    Samadi S; Sereshti H; Assadi Y
    J Chromatogr A; 2012 Jan; 1219():61-5. PubMed ID: 22153286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene oxide-based dispersive micro-solid phase extraction for separation and preconcentration of nicotine from biological and environmental water samples followed by gas chromatography-flame ionization detection.
    Mahpishanian S; Sereshti H
    Talanta; 2014 Dec; 130():71-7. PubMed ID: 25159381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyphenated dispersive solid- and liquid-phase microextraction technique based on a hydrophobic deep eutectic solvent: application for trace analysis of pesticides in fruit juices.
    Sereshti H; Jamshidi F; Nouri N; Nodeh HR
    J Sci Food Agric; 2020 Apr; 100(6):2534-2543. PubMed ID: 31975389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic dispersive solid-phase extraction of some pesticides from fruit juices using monodisperse nanosorbent combined with dispersive liquid-liquid micro-extraction.
    Farajzadeh MA; Shaghaghipour S; Abbaspour M; Afshar Mogaddam MR
    Anal Sci; 2023 Mar; 39(3):303-312. PubMed ID: 36539608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.