These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 27810123)

  • 1. Leaching behaviour of hazardous waste under the impact of different ambient conditions.
    Pecorini I; Baldi F; Bacchi D; Carnevale EA; Corti A
    Waste Manag; 2017 May; 63():96-106. PubMed ID: 27810123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Percolation and batch leaching tests to assess release of inorganic pollutants from municipal solid waste incinerator residues.
    Quina MJ; Bordado JC; Quinta-Ferreira RM
    Waste Manag; 2011 Feb; 31(2):236-45. PubMed ID: 21071197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis and interpretation of the leaching behaviour of waste thermal treatment bottom ash by batch and column tests.
    Di Gianfilippo M; Costa G; Verginelli I; Gavasci R; Lombardi F
    Waste Manag; 2016 Oct; 56():216-28. PubMed ID: 27478024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of drying on leaching testing of treated municipal solid waste incineration APC-residues.
    Hu Y; Hyks J; Astrup T; Christensen TH
    Waste Manag Res; 2008 Aug; 26(4):400-5. PubMed ID: 18727332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Test method selection, validation against field data, and predictive modelling for impact evaluation of stabilised waste disposal.
    van der Sloot HA; van Zomeren A; Meeussen JC; Seignette P; Bleijerveld R
    J Hazard Mater; 2007 Mar; 141(2):354-69. PubMed ID: 16889893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterisation of major component leaching and buffering capacity of RDF incineration and gasification bottom ash in relation to reuse or disposal scenarios.
    Rocca S; van Zomeren A; Costa G; Dijkstra JJ; Comans RN; Lombardi F
    Waste Manag; 2012 Apr; 32(4):759-68. PubMed ID: 22226920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leaching, geochemical modelling and field verification of a municipal solid waste and a predominantly non-degradable waste landfill.
    van der Sloot HA; Kosson DS; van Zomeren A
    Waste Manag; 2017 May; 63():74-95. PubMed ID: 27523713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of percolation to batch and sequential leaching tests: theory and data.
    Grathwohl P; Susset B
    Waste Manag; 2009 Oct; 29(10):2681-8. PubMed ID: 19576753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction and demolition waste: Comparison of standard up-flow column and down-flow lysimeter leaching tests.
    Butera S; Hyks J; Christensen TH; Astrup TF
    Waste Manag; 2015 Sep; 43():386-97. PubMed ID: 26031330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of pH on the leaching behaviour of inorganic components from municipal solid waste APC residues.
    Quina MJ; Bordado JC; Quinta-Ferreira RM
    Waste Manag; 2009 Sep; 29(9):2483-93. PubMed ID: 19545989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leaching behaviour of hazardous demolition waste.
    Roussat N; Méhu J; Abdelghafour M; Brula P
    Waste Manag; 2008 Nov; 28(11):2032-40. PubMed ID: 18160273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis and modeling of metals release from MBT wastes through batch and up-flow column tests.
    Pantini S; Verginelli I; Lombardi F
    Waste Manag; 2015 Apr; 38():22-32. PubMed ID: 25577945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rendering wastes obtained from gold analysis by the lead-fusion fire-assay method non-hazardous.
    Magalhães FB; de Freitas Carvalho C; Corrêa Netto Carvalho EL; Yoshida MI; Gouvêa dos-Santos C
    J Environ Manage; 2012 Nov; 110():110-5. PubMed ID: 22771892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Round robin testing of a percolation column leaching procedure.
    Geurts R; Spooren J; Quaghebeur M; Broos K; Kenis C; Debaene L
    Waste Manag; 2016 Sep; 55():31-7. PubMed ID: 27311350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of heavy metal leaching from spent household batteries disposed in municipal solid waste.
    Karnchanawong S; Limpiteeprakan P
    Waste Manag; 2009 Feb; 29(2):550-8. PubMed ID: 18562190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of long-term pH developments in leachate from waste incineration residues.
    Astrup T; Jakobsen R; Christensen TH; Hansen JB; Hjelmar O
    Waste Manag Res; 2006 Oct; 24(5):491-502. PubMed ID: 17121121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental percolation under intermittent conditions: influence on pollutants emission from waste.
    Crest M; Blanc D; Moszkowicz P; Dujet C
    J Hazard Mater; 2007 Jan; 139(3):523-8. PubMed ID: 16650929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solid waste: terminological and long-term environmental risk assessment problems exemplified in a power plant fly ash study.
    Twardowska I; Szczepanska J
    Sci Total Environ; 2002 Feb; 285(1-3):29-51. PubMed ID: 11874046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of carbonization as a thermal pretreatment method for landfilling by column leaching tests.
    Hwang IH; Matsuto T
    Waste Manag; 2008; 28(1):3-14. PubMed ID: 17267198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slag from hazardous waste incineration: reduction of heavy metal leaching.
    Reich J
    Waste Manag Res; 2003 Apr; 21(2):110-8. PubMed ID: 12739725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.