BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 27810393)

  • 1. Metabolic engineering of Saccharomyces cerevisiae for de novo production of dihydrochalcones with known antioxidant, antidiabetic, and sweet tasting properties.
    Eichenberger M; Lehka BJ; Folly C; Fischer D; Martens S; Simón E; Naesby M
    Metab Eng; 2017 Jan; 39():80-89. PubMed ID: 27810393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering cytosolic acetyl-coenzyme A supply in Saccharomyces cerevisiae: Pathway stoichiometry, free-energy conservation and redox-cofactor balancing.
    van Rossum HM; Kozak BU; Pronk JT; van Maris AJA
    Metab Eng; 2016 Jul; 36():99-115. PubMed ID: 27016336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antioxidant Structure⁻Activity Relationship Analysis of Five Dihydrochalcones.
    Li X; Chen B; Xie H; He Y; Zhong D; Chen D
    Molecules; 2018 May; 23(5):. PubMed ID: 29757201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A squalene synthase protein degradation method for improved sesquiterpene production in Saccharomyces cerevisiae.
    Peng B; Plan MR; Chrysanthopoulos P; Hodson MP; Nielsen LK; Vickers CE
    Metab Eng; 2017 Jan; 39():209-219. PubMed ID: 27939849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis.
    Cardenas J; Da Silva NA
    Metab Eng; 2016 Jul; 36():80-89. PubMed ID: 26969250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of three chalcone synthase-like genes from apple (Malus x domestica Borkh.).
    Yahyaa M; Ali S; Davidovich-Rikanati R; Ibdah M; Shachtier A; Eyal Y; Lewinsohn E; Ibdah M
    Phytochemistry; 2017 Aug; 140():125-133. PubMed ID: 28482241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosynthetic Pathway and Metabolic Engineering of Plant Dihydrochalcones.
    Ibdah M; Martens S; Gang DR
    J Agric Food Chem; 2018 Mar; 66(10):2273-2280. PubMed ID: 29171271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining Gal4p-mediated expression enhancement and directed evolution of isoprene synthase to improve isoprene production in Saccharomyces cerevisiae.
    Wang F; Lv X; Xie W; Zhou P; Zhu Y; Yao Z; Yang C; Yang X; Ye L; Yu H
    Metab Eng; 2017 Jan; 39():257-266. PubMed ID: 28034770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis of the Dihydrochalcone Sweetener Trilobatin Requires
    Wang Y; Yauk YK; Zhao Q; Hamiaux C; Xiao Z; Gunaseelan K; Zhang L; Tomes S; López-Girona E; Cooney J; Li H; Chagné D; Ma F; Li P; Atkinson RG
    Plant Physiol; 2020 Oct; 184(2):738-752. PubMed ID: 32732350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient production of the Nylon 12 monomer ω-aminododecanoic acid methyl ester from renewable dodecanoic acid methyl ester with engineered Escherichia coli.
    Ladkau N; Assmann M; Schrewe M; Julsing MK; Schmid A; Bühler B
    Metab Eng; 2016 Jul; 36():1-9. PubMed ID: 26969251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and cloning of an NADPH-dependent hydroxycinnamoyl-CoA double bond reductase involved in dihydrochalcone formation in Malus×domestica Borkh.
    Ibdah M; Berim A; Martens S; Valderrama AL; Palmieri L; Lewinsohn E; Gang DR
    Phytochemistry; 2014 Nov; 107():24-31. PubMed ID: 25152451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sweet tea (
    Shang A; Liu HY; Luo M; Xia Y; Yang X; Li HY; Wu DT; Sun Q; Geng F; Gan RY
    Crit Rev Food Sci Nutr; 2022; 62(4):917-934. PubMed ID: 33030031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae.
    Koopman F; Beekwilder J; Crimi B; van Houwelingen A; Hall RD; Bosch D; van Maris AJ; Pronk JT; Daran JM
    Microb Cell Fact; 2012 Dec; 11():155. PubMed ID: 23216753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of Saccharomyces cerevisiae for the overproduction of short branched-chain fatty acids.
    Yu AQ; Pratomo Juwono NK; Foo JL; Leong SSJ; Chang MW
    Metab Eng; 2016 Mar; 34():36-43. PubMed ID: 26721212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering a microbial platform for de novo biosynthesis of diverse methylxanthines.
    McKeague M; Wang YH; Cravens A; Win MN; Smolke CD
    Metab Eng; 2016 Nov; 38():191-203. PubMed ID: 27519552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced d-lactic acid production by recombinant Saccharomyces cerevisiae following optimization of the global metabolic pathway.
    Yamada R; Wakita K; Mitsui R; Ogino H
    Biotechnol Bioeng; 2017 Sep; 114(9):2075-2084. PubMed ID: 28475210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering microbes for isoprene production.
    Ye L; Lv X; Yu H
    Metab Eng; 2016 Nov; 38():125-138. PubMed ID: 27424210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of Pinocembrin Biosynthesis in
    Tous Mohedano M; Mao J; Chen Y
    ACS Synth Biol; 2023 Jan; 12(1):144-152. PubMed ID: 36534476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering of the complete pathway leading to heterologous biosynthesis of various flavonoids and stilbenoids in Saccharomyces cerevisiae.
    Trantas E; Panopoulos N; Ververidis F
    Metab Eng; 2009 Nov; 11(6):355-66. PubMed ID: 19631278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. De novo biosynthesis of anthocyanins in Saccharomyces cerevisiae.
    Eichenberger M; Hansson A; Fischer D; Dürr L; Naesby M
    FEMS Yeast Res; 2018 Jun; 18(4):. PubMed ID: 29771352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.