BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 27810396)

  • 1. Respiratory complex II: ROS production and the kinetics of ubiquinone reduction.
    Grivennikova VG; Kozlovsky VS; Vinogradov AD
    Biochim Biophys Acta Bioenerg; 2017 Feb; 1858(2):109-117. PubMed ID: 27810396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates.
    Siebels I; Dröse S
    Biochim Biophys Acta; 2013 Oct; 1827(10):1156-64. PubMed ID: 23800966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen-dependence of mitochondrial ROS production as detected by Amplex Red assay.
    Grivennikova VG; Kareyeva AV; Vinogradov AD
    Redox Biol; 2018 Jul; 17():192-199. PubMed ID: 29702406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on the succinate dehydrogenating system. Isolation and properties of the mitochondrial succinate-ubiquinone reductase.
    Tushurashvili PR; Gavrikova EV; Ledenev AN; Vinogradov AD
    Biochim Biophys Acta; 1985 Sep; 809(2):145-59. PubMed ID: 2994719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fumarate reductase activity of bovine heart succinate-ubiquinone reductase. New assay system and overall properties of the reaction.
    Grivennikova VG; Gavrikova EV; Timoshin AA; Vinogradov AD
    Biochim Biophys Acta; 1993 Jan; 1140(3):282-92. PubMed ID: 8417779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactive oxygen species production induced by pore opening in cardiac mitochondria: The role of complex II.
    Korge P; John SA; Calmettes G; Weiss JN
    J Biol Chem; 2017 Jun; 292(24):9896-9905. PubMed ID: 28450394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of catalytic activity and inhibitors of quinone reactions of succinate dehydrogenase (Succinate-ubiquinone oxidoreductase) and fumarate reductase (Menaquinol-fumarate oxidoreductase) from Escherichia coli.
    Maklashina E; Cecchini G
    Arch Biochem Biophys; 1999 Sep; 369(2):223-32. PubMed ID: 10486141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactive oxygen species are generated by the respiratory complex II--evidence for lack of contribution of the reverse electron flow in complex I.
    Moreno-Sánchez R; Hernández-Esquivel L; Rivero-Segura NA; Marín-Hernández A; Neuzil J; Ralph SJ; Rodríguez-Enríquez S
    FEBS J; 2013 Feb; 280(3):927-38. PubMed ID: 23206332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manganese ions enhance mitochondrial H
    Bonke E; Siebels I; Zwicker K; Dröse S
    Free Radic Biol Med; 2016 Oct; 99():43-53. PubMed ID: 27474449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manganese ions induce H2O2 generation at the ubiquinone binding site of mitochondrial complex II.
    Bonke E; Zwicker K; Dröse S
    Arch Biochem Biophys; 2015 Aug; 580():75-83. PubMed ID: 26116786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of substituents of the benzoquinone ring on electron-transfer activities of ubiquinone derivatives.
    Gu LQ; Yu L; Yu CA
    Biochim Biophys Acta; 1990 Feb; 1015(3):482-92. PubMed ID: 2154255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of superoxide-radical by the NADH:ubiquinone oxidoreductase of heart mitochondria.
    Vinogradov AD; Grivennikova VG
    Biochemistry (Mosc); 2005 Feb; 70(2):120-7. PubMed ID: 15807648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Architecture of succinate dehydrogenase and reactive oxygen species generation.
    Yankovskaya V; Horsefield R; Törnroth S; Luna-Chavez C; Miyoshi H; Léger C; Byrne B; Cecchini G; Iwata S
    Science; 2003 Jan; 299(5607):700-4. PubMed ID: 12560550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of superoxide by the mitochondrial Complex I.
    Grivennikova VG; Vinogradov AD
    Biochim Biophys Acta; 2006; 1757(5-6):553-61. PubMed ID: 16678117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sites of reactive oxygen species generation by mitochondria oxidizing different substrates.
    Quinlan CL; Perevoshchikova IV; Hey-Mogensen M; Orr AL; Brand MD
    Redox Biol; 2013; 1(1):304-12. PubMed ID: 24024165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on the succinate dehydrogenating system. Interaction of the mitochondrial succinate-ubiquinone reductase with pyridoxal phosphate.
    Choudhry ZM; Kotlyar AB; Vinogradov AD
    Biochim Biophys Acta; 1986 Jun; 850(1):131-8. PubMed ID: 3707947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of ubiquinone reduction by the resolved succinate: ubiquinone reductase.
    Grivennikova VG; Vinogradov AD
    Biochim Biophys Acta; 1982 Dec; 682(3):491-5. PubMed ID: 7150582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of Sdh4p Tyr-89 in ubiquinone reduction by the Saccharomyces cerevisiae succinate dehydrogenase.
    Silkin Y; Oyedotun KS; Lemire BD
    Biochim Biophys Acta; 2007 Feb; 1767(2):143-50. PubMed ID: 17208193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hysteresis and bistability in the succinate-CoQ reductase activity and reactive oxygen species production in the mitochondrial respiratory complex II.
    Markevich NI; Galimova MH; Markevich LN
    Redox Biol; 2020 Oct; 37():101630. PubMed ID: 32747163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein-ubiquinone interaction in bovine heart mitochondrial succinate-cytochrome c reductase. Synthesis and biological properties of fluorine substituted ubiquinone derivatives.
    Yang F; Yu L; He DY; Yu CA
    J Biol Chem; 1991 Nov; 266(31):20863-9. PubMed ID: 1657937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.