BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 27810396)

  • 21. Localization of superoxide anion production to mitochondrial electron transport chain in 3-NPA-treated cells.
    Bacsi A; Woodberry M; Widger W; Papaconstantinou J; Mitra S; Peterson JW; Boldogh I
    Mitochondrion; 2006 Oct; 6(5):235-44. PubMed ID: 17011837
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The contribution of mitochondrial respiratory complexes to the production of reactive oxygen species.
    McLennan HR; Degli Esposti M
    J Bioenerg Biomembr; 2000 Apr; 32(2):153-62. PubMed ID: 11768748
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effects of nitric oxide on electron transport complexes.
    Welter R; Yu L; Yu CA
    Arch Biochem Biophys; 1996 Jul; 331(1):9-14. PubMed ID: 8660677
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interaction of ubiquinone and vitamin K3 with mitochondrial succinate-ubiquinone oxidoreductase.
    Kotlyar AB; Gutman M; Ackrell BA
    Biochem Biophys Res Commun; 1992 Aug; 186(3):1656-62. PubMed ID: 1510689
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanism of O2- generation in reduction and oxidation cycle of ubiquinones in a model of mitochondrial electron transport systems.
    Sugioka K; Nakano M; Totsune-Nakano H; Minakami H; Tero-Kubota S; Ikegami Y
    Biochim Biophys Acta; 1988 Dec; 936(3):377-85. PubMed ID: 2848580
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Malate oxidation by mitochondrial succinate:ubiquinone-reductase].
    Belikova IuO; Kotliar AB
    Biokhimiia; 1988 Apr; 53(4):668-76. PubMed ID: 3395646
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protein ubiquinone interaction. Synthesis and biological properties of 5-alkyl ubiquinone derivatives.
    He DY; Yu L; Yu CA
    J Biol Chem; 1994 Nov; 269(45):27885-8. PubMed ID: 7961719
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Schistosoma mansoni sporocysts contain rhodoquinone and produce succinate by fumarate reduction.
    Van Hellemond JJ; Van Remoortere A; Tielens AG
    Parasitology; 1997 Aug; 115 ( Pt 2)():177-82. PubMed ID: 10190173
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reduction of hydrophilic ubiquinones by the flavin in mitochondrial NADH:ubiquinone oxidoreductase (Complex I) and production of reactive oxygen species.
    King MS; Sharpley MS; Hirst J
    Biochemistry; 2009 Mar; 48(9):2053-62. PubMed ID: 19220002
    [TBL] [Abstract][Full Text] [Related]  

  • 30. New insights into the superoxide generation sites in bovine heart NADH-ubiquinone oxidoreductase (Complex I): the significance of protein-associated ubiquinone and the dynamic shifting of generation sites between semiflavin and semiquinone radicals.
    Ohnishi ST; Shinzawa-Itoh K; Ohta K; Yoshikawa S; Ohnishi T
    Biochim Biophys Acta; 2010 Dec; 1797(12):1901-9. PubMed ID: 20513438
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions.
    Quinlan CL; Orr AL; Perevoshchikova IV; Treberg JR; Ackrell BA; Brand MD
    J Biol Chem; 2012 Aug; 287(32):27255-64. PubMed ID: 22689576
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Succinate-ubiquinone reductase site of the respiratory chain].
    Vinogradov AD
    Biokhimiia; 1986 Dec; 51(12):1944-73. PubMed ID: 3542059
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Complex III-dependent superoxide production of brain mitochondria contributes to seizure-related ROS formation.
    Malinska D; Kulawiak B; Kudin AP; Kovacs R; Huchzermeyer C; Kann O; Szewczyk A; Kunz WS
    Biochim Biophys Acta; 2010; 1797(6-7):1163-70. PubMed ID: 20211146
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rhodoquinone and complex II of the electron transport chain in anaerobically functioning eukaryotes.
    Van Hellemond JJ; Klockiewicz M; Gaasenbeek CP; Roos MH; Tielens AG
    J Biol Chem; 1995 Dec; 270(52):31065-70. PubMed ID: 8537365
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of ubiquinone in the mitochondrial generation of hydrogen peroxide.
    Boveris A; Cadenas E; Stoppani AO
    Biochem J; 1976 May; 156(2):435-44. PubMed ID: 182149
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ubiquinone-binding site mutations in the Saccharomyces cerevisiae succinate dehydrogenase generate superoxide and lead to the accumulation of succinate.
    Szeto SSW; Reinke SN; Sykes BD; Lemire BD
    J Biol Chem; 2007 Sep; 282(37):27518-27526. PubMed ID: 17636259
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Targeting succinate:ubiquinone reductase potentiates the efficacy of anticancer therapy.
    Kruspig B; Valter K; Skender B; Zhivotovsky B; Gogvadze V
    Biochim Biophys Acta; 2016 Aug; 1863(8):2065-71. PubMed ID: 27140478
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Developmental changes in the respiratory chain of Ascaris mitochondria.
    Takamiya S; Kita K; Wang H; Weinstein PP; Hiraishi A; Oya H; Aoki T
    Biochim Biophys Acta; 1993 Feb; 1141(1):65-74. PubMed ID: 8435436
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhibition of succinate:ubiquinone reductase and decrease of ubiquinol in nephrotoxic cysteine S-conjugate-induced oxidative cell injury.
    van de Water B; Zoeteweij JP; de Bont HJ; Nagelkerke JF
    Mol Pharmacol; 1995 Nov; 48(5):928-37. PubMed ID: 7476924
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Reconstitution of succinate-ubiquinone reductase of the respiratory chain of mitochondria].
    Gavrikov VG; Gavrikova EV; Vinogradov AD
    Biokhimiia; 1980 Apr; 45(4):747-55. PubMed ID: 7378499
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.