These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

514 related articles for article (PubMed ID: 27810538)

  • 1. Optimum reaction ratio of coal fly ash to blast furnace cement for effective removal of hydrogen sulfide.
    Asaoka S; Okamura H; Kim K; Hatanaka Y; Nakamoto K; Hino K; Oikawa T; Hayakawa S; Okuda T
    Chemosphere; 2017 Feb; 168():384-389. PubMed ID: 27810538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of hydrogen sulfide removal efficiency with granulated coal ash applied to eutrophic marine sediment using a simplified simulation model.
    Asaoka S; Yamamoto T; Yamamoto H; Okamura H; Hino K; Nakamoto K; Saito T
    Mar Pollut Bull; 2015 May; 94(1-2):55-61. PubMed ID: 25818857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of chemical composition of coal ash used to prepare granulated coal ash on the removal of hydrogen sulfide from water.
    Asaoka S; Ishidu T; Nakamoto K
    Water Environ Res; 2023 Aug; 95(8):e10916. PubMed ID: 37533124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Utilizing a granulated coal bottom ash and oyster shells for nutrient removal in eutrophic sediments.
    Jeong I; Kim K
    Mar Pollut Bull; 2022 Apr; 177():113549. PubMed ID: 35303632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strength, leachability and microstructure characterisation of Na2SiO3-activated ground granulated blast-furnace slag solidified MSWI fly ash.
    Zhang D; Liu W; Hou H; He X
    Waste Manag Res; 2007 Oct; 25(5):402-7. PubMed ID: 17985665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical evaluation of the use of granulated coal ash to reduce an oxygen-deficient water mass.
    Yamamoto H; Yamamoto T; Mito Y; Asaoka S
    Mar Pollut Bull; 2016 Jun; 107(1):188-205. PubMed ID: 27143344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A pilot study on remediation of sediments enriched by oyster farming wastes using granulated coal ash.
    Yamamoto T; Kim KH; Shirono K
    Mar Pollut Bull; 2015 Jan; 90(1-2):54-9. PubMed ID: 25480153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption kinetics and modeling of H
    Aslam Z; Hussein IA; Shawabkeh RA; Parvez MA; Ahmad W; Ihsanullah
    J Air Waste Manag Assoc; 2019 Feb; 69(2):246-257. PubMed ID: 30325269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mobility and contamination assessment of mercury in coal fly ash, atmospheric deposition, and soil collected from Tianjin, China.
    Wei Z; Wu G; Su R; Li C; Liang P
    Environ Toxicol Chem; 2011 Sep; 30(9):1997-2003. PubMed ID: 21713969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remediation of coastal marine sediments using granulated coal ash.
    Asaoka S; Yamamoto T; Yoshioka I; Tanaka H
    J Hazard Mater; 2009 Dec; 172(1):92-8. PubMed ID: 19632778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The secondary release of mercury in coal fly ash-based flue-gas mercury removal technology.
    He J; Duan C; Lei M; Zhu X
    Environ Technol; 2016; 37(1):28-38. PubMed ID: 26121324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Field experiments on remediation of coastal sediments using granulated coal ash.
    Kim K; Hibino T; Yamamoto T; Hayakawa S; Mito Y; Nakamoto K; Lee IC
    Mar Pollut Bull; 2014 Jun; 83(1):132-7. PubMed ID: 24759507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Re-using of coal-fired fly ash for arsenic vapors in-situ retention before SCR catalyst: Experiments and mechanisms.
    Li S; Gong H; Hu H; Liu H; Huang Y; Fu B; Wang L; Yao H
    Chemosphere; 2020 Sep; 254():126700. PubMed ID: 32334244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nano-mineralogical investigation of coal and fly ashes from coal-based captive power plant (India): an introduction of occupational health hazards.
    Oliveira ML; Marostega F; Taffarel SR; Saikia BK; Waanders FB; DaBoit K; Baruah BP; Silva LF
    Sci Total Environ; 2014 Jan; 468-469():1128-37. PubMed ID: 24121564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of acid mine drainage with Ordinary Portland Cement blended solid residues generated from active treatment of acid mine drainage with coal fly ash.
    Gitari WM; Petrik LF; Key DL; Okujeni C
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(2):117-37. PubMed ID: 21170774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppression of phosphate liberation from eutrophic lake sediment by using fly ash and ordinary portland cement.
    Ye HP; Chen FZ; Sheng YQ; Sheng GY; Fu JM
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(8):1655-66. PubMed ID: 16835118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of fly-ash and dust particulate matters from syngas produced by gasification of coal by using a multi-stage dual-flow sieve plate wet scrubber.
    Kurella S; Meikap BC
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016 Aug; 51(10):870-6. PubMed ID: 27230635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of chlorophenols from aqueous solution by fly ash.
    Kao PC; Tzeng JH; Huang TL
    J Hazard Mater; 2000 Sep; 76(2-3):237-49. PubMed ID: 10936536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Green remediation and recycling of contaminated sediment by waste-incorporated stabilization/solidification.
    Wang L; Tsang DCW; Poon CS
    Chemosphere; 2015 Mar; 122():257-264. PubMed ID: 25522855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined adsorption and oxidation mechanisms of hydrogen sulfide on granulated coal ash.
    Asaoka S; Hayakawa S; Kim KH; Takeda K; Katayama M; Yamamoto T
    J Colloid Interface Sci; 2012 Jul; 377(1):284-90. PubMed ID: 22487226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.