These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

507 related articles for article (PubMed ID: 27810625)

  • 41. Radiation Dosimetry of Inhaled Radioactive Aerosols: CFPD and MCNP Transport Simulations of Radionuclides in the Lung.
    Talaat K; Xi J; Baldez P; Hecht A
    Sci Rep; 2019 Nov; 9(1):17450. PubMed ID: 31768010
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transport and deposition of ultrafine particles in the upper tracheobronchial tree: a comparative study between approximate and realistic respiratory tract models.
    Dong J; Li J; Tian L; Tu J
    Comput Methods Biomech Biomed Engin; 2021 Aug; 24(10):1125-1135. PubMed ID: 33410725
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Validating CFD Predictions of Pharmaceutical Aerosol Deposition with In Vivo Data.
    Tian G; Hindle M; Lee S; Longest PW
    Pharm Res; 2015 Oct; 32(10):3170-87. PubMed ID: 25944585
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Modeling airflow and particle transport/deposition in pulmonary airways.
    Kleinstreuer C; Zhang Z; Li Z
    Respir Physiol Neurobiol; 2008 Nov; 163(1-3):128-38. PubMed ID: 18674643
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Deposition of Particles in the Alveolar Airways: Inhalation and Breath-Hold with Pharmaceutical Aerosols.
    Khajeh-Hosseini-Dalasm N; Longest PW
    J Aerosol Sci; 2015 Jan; 79():15-30. PubMed ID: 25382867
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Micron particle deposition in a tracheobronchial airway model under different breathing conditions.
    Inthavong K; Choi LT; Tu J; Ding S; Thien F
    Med Eng Phys; 2010 Dec; 32(10):1198-212. PubMed ID: 20855226
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Numerical simulation of emitted particle characteristics and airway deposition distribution of Symbicort(®) Turbuhaler(®) dry powder fixed combination aerosol drug.
    Farkas Á; Jókay Á; Balásházy I; Füri P; Müller V; Tomisa G; Horváth A
    Eur J Pharm Sci; 2016 Oct; 93():371-9. PubMed ID: 27552906
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Computational modeling of aerosol deposition in respiratory tract: a review.
    Rostami AA
    Inhal Toxicol; 2009 Feb; 21(4):262-90. PubMed ID: 19235608
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pharmaceutical aerosols deposition patterns from a Dry Powder Inhaler: Euler Lagrangian prediction and validation.
    Ravi Kannan R; Przekwas AJ; Singh N; Delvadia R; Tian G; Walenga R
    Med Eng Phys; 2017 Apr; 42():35-47. PubMed ID: 27993478
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Computer modeling of airway deposition distribution of Foster(®) NEXThaler(®) and Seretide(®) Diskus(®) dry powder combination drugs.
    Jókay Á; Farkas Á; Füri P; Horváth A; Tomisa G; Balásházy I
    Eur J Pharm Sci; 2016 Jun; 88():210-8. PubMed ID: 26976481
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Application of a One-Dimensional Computational Model for the Prediction of Deposition from a Dry Powder Inhaler.
    Gourgoulianis K; Daniil Z; Athanasiou K; Rozou S; Bontozoglou V
    J Aerosol Med Pulm Drug Deliv; 2017 Dec; 30(6):435-443. PubMed ID: 28683222
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Simulating the effect of individual upper airway anatomical features on drug deposition.
    Ma Z; Kourmatzis A; Milton-McGurk L; Chan HK; Farina D; Cheng S
    Int J Pharm; 2022 Nov; 628():122219. PubMed ID: 36179925
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Numerical simulations of particle behaviour in a realistic human airway model with varying inhalation patterns.
    Kadota K; Inoue N; Matsunaga Y; Takemiya T; Kubo K; Imano H; Uchiyama H; Tozuka Y
    J Pharm Pharmacol; 2020 Jan; 72(1):17-28. PubMed ID: 31713883
    [TBL] [Abstract][Full Text] [Related]  

  • 54. New Approach Methodology for Assessing Inhalation Risks of a Contact Respiratory Cytotoxicant: Computational Fluid Dynamics-Based Aerosol Dosimetry Modeling for Cross-Species and In Vitro Comparisons.
    Corley RA; Kuprat AP; Suffield SR; Kabilan S; Hinderliter PM; Yugulis K; Ramanarayanan TS
    Toxicol Sci; 2021 Aug; 182(2):243-259. PubMed ID: 34077545
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dynamics of oropharyngeal aerosol transport and deposition with the realistic flow pattern.
    Sosnowski TR; Moskal A; Gradoń L
    Inhal Toxicol; 2006 Sep; 18(10):773-80. PubMed ID: 16774866
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Numerical Simulation of the Airflow and Aerosol Particle Deposition in a Realistic Airway Model of a Healthy Adult.
    Ciloglu D; Karaman A
    J Pharm Sci; 2022 Nov; 111(11):3130-3140. PubMed ID: 35948158
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Coupled and reduced dimensional modeling of respiratory mechanics during spontaneous breathing.
    Ismail M; Comerford A; Wall WA
    Int J Numer Method Biomed Eng; 2013 Nov; 29(11):1285-305. PubMed ID: 23904272
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modeling age-related particle deposition in humans.
    Asgharian B; Ménache MG; Miller FJ
    J Aerosol Med; 2004; 17(3):213-24. PubMed ID: 15625813
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Targeting inhaled aerosol delivery to upper airways in children: Insight from computational fluid dynamics (CFD).
    Das P; Nof E; Amirav I; Kassinos SC; Sznitman J
    PLoS One; 2018; 13(11):e0207711. PubMed ID: 30458054
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modelling Particle Transport and Deposition in the Human Healthy and Stented Tracheobronchial Airways.
    Malvè M; Sánchez-Matás C; López-Villalobos JL
    Ann Biomed Eng; 2020 Jun; 48(6):1805-1820. PubMed ID: 32215754
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.