These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 27810675)
1. Local and systemic hormonal responses in pepper leaves during compatible and incompatible pepper-tobamovirus interactions. Dziurka M; Janeczko A; Juhász C; Gullner G; Oklestková J; Novák O; Saja D; Skoczowski A; Tóbiás I; Barna B Plant Physiol Biochem; 2016 Dec; 109():355-364. PubMed ID: 27810675 [TBL] [Abstract][Full Text] [Related]
2. The expression of several pepper fatty acid desaturase genes is robustly activated in an incompatible pepper-tobamovirus interaction, but only weakly in a compatible interaction. Balogh E; Juhász C; Dankó T; Fodor J; Tóbiás I; Gullner G Plant Physiol Biochem; 2020 Mar; 148():347-358. PubMed ID: 32004918 [TBL] [Abstract][Full Text] [Related]
3. Comparison of a compatible and an incompatible pepper-tobamovirus interaction by biochemical and non-invasive techniques: chlorophyll a fluorescence, isothermal calorimetry and FT-Raman spectroscopy. Rys M; Juhász C; Surówka E; Janeczko A; Saja D; Tóbiás I; Skoczowski A; Barna B; Gullner G Plant Physiol Biochem; 2014 Oct; 83():267-78. PubMed ID: 25194777 [TBL] [Abstract][Full Text] [Related]
4. Transcriptome profiling of pepper leaves by RNA-Seq during an incompatible and a compatible pepper-tobamovirus interaction. Kalapos B; Juhász C; Balogh E; Kocsy G; Tóbiás I; Gullner G Sci Rep; 2021 Oct; 11(1):20680. PubMed ID: 34667194 [TBL] [Abstract][Full Text] [Related]
5. Proteomic analysis of pathogenesis-related proteins (PRs) induced by compatible and incompatible interactions of pepper mild mottle virus (PMMoV) in Capsicum chinense L3 plants. Elvira MI; Galdeano MM; Gilardi P; García-Luque I; Serra MT J Exp Bot; 2008; 59(6):1253-65. PubMed ID: 18375936 [TBL] [Abstract][Full Text] [Related]
6. Susceptibility of Capsicum breeding lines to NTN strain of Potato virus Y (PVY(NTN)) and Obuda pepper virus (ObPV). Kazinczi G; Kovács J; Takács AP; Horváth J; Gáborjányi R Commun Agric Appl Biol Sci; 2003; 68(4 Pt B):555-9. PubMed ID: 15151290 [TBL] [Abstract][Full Text] [Related]
7. Cooperative functioning between phenylalanine ammonia lyase and isochorismate synthase activities contributes to salicylic acid biosynthesis in soybean. Shine MB; Yang JW; El-Habbak M; Nagyabhyru P; Fu DQ; Navarre D; Ghabrial S; Kachroo P; Kachroo A New Phytol; 2016 Nov; 212(3):627-636. PubMed ID: 27411159 [TBL] [Abstract][Full Text] [Related]
8. Transcriptomic and functional analyses reveal an antiviral role of autophagy during pepper mild mottle virus infection. Jiao Y; An M; Li X; Yu M; Zhao X; Xia Z; Wu Y BMC Plant Biol; 2020 Oct; 20(1):495. PubMed ID: 33121441 [TBL] [Abstract][Full Text] [Related]
9. Characterization of a pepper mild mottle tobamovirus strain capable of overcoming the L3 gene-mediated resistance, distinct from the resistance-breaking Italian isolate. Tsuda S; Kirita M; Watanabe Y Mol Plant Microbe Interact; 1998 Apr; 11(4):327-31. PubMed ID: 9530869 [TBL] [Abstract][Full Text] [Related]
10. The coat protein of tobamovirus acts as elicitor of both L2 and L4 gene-mediated resistance in Capsicum. Gilardi P; García-Luque I; Serra MT J Gen Virol; 2004 Jul; 85(Pt 7):2077-2085. PubMed ID: 15218193 [TBL] [Abstract][Full Text] [Related]
11. An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic acid-dependent signalling of the defence response to microbial pathogens. Kim DS; Hwang BK J Exp Bot; 2014 Jun; 65(9):2295-306. PubMed ID: 24642849 [TBL] [Abstract][Full Text] [Related]
12. Induction of pepper cDNA encoding a lipid transfer protein during the resistance response to tobacco mosaic virus. Park CJ; Shin R; Park JM; Lee GJ; You JS; Paek KH Plant Mol Biol; 2002 Feb; 48(3):243-54. PubMed ID: 11855726 [TBL] [Abstract][Full Text] [Related]
13. Cooperative effect of two amino acid mutations in the coat protein of Pepper mild mottle virus overcomes L3-mediated resistance in Capsicum plants. Hamada H; Tomita R; Iwadate Y; Kobayashi K; Munemura I; Takeuchi S; Hikichi Y; Suzuki K Virus Genes; 2007 Apr; 34(2):205-14. PubMed ID: 17160553 [TBL] [Abstract][Full Text] [Related]
14. Analysis of the antioxidant response of Nicotiana benthamiana to infection with two strains of Pepper mild mottle virus. Hakmaoui A; Pérez-Bueno ML; García-Fontana B; Camejo D; Jiménez A; Sevilla F; Barón M J Exp Bot; 2012 Sep; 63(15):5487-96. PubMed ID: 22915745 [TBL] [Abstract][Full Text] [Related]
15. Rhizobacteria-induced resistance perturbs viral disease progress and triggers defense-related gene expression. Ahn IP; Park K; Kim CH Mol Cells; 2002 Apr; 13(2):302-8. PubMed ID: 12019515 [TBL] [Abstract][Full Text] [Related]
16. Transcriptome profiling using Illumina- and SMRT-based RNA-seq of hot pepper for in-depth understanding of genes involved in CMV infection. Zhu C; Li X; Zheng J Gene; 2018 Aug; 666():123-133. PubMed ID: 29730427 [TBL] [Abstract][Full Text] [Related]
17. The complete nucleotide sequence and development of a differential detection assay for a pepper mild mottle virus (PMMoV) isolate that overcomes L3 resistance in pepper. Velasco L; Janssen D; Ruiz-Garcia L; Segundo E; Cuadrado IM J Virol Methods; 2002 Oct; 106(1):135-40. PubMed ID: 12367738 [TBL] [Abstract][Full Text] [Related]
18. Tobamoviruses of two new species trigger resistance in pepper plants harbouring functional Vélez-Olmedo JB; Fribourg CE; Melo FL; Nagata T; de Oliveira AS; Resende RO J Gen Virol; 2021 Feb; 102(2):. PubMed ID: 33210991 [TBL] [Abstract][Full Text] [Related]
19. The coat protein is required for the elicitation of the Capsicum L2 gene-mediated resistance against the tobamoviruses. de la Cruz A; López L; Tenllado F; Díaz-Ruíz JR; Sanz AI; Vaquero C; Serra MT; García-Luque I Mol Plant Microbe Interact; 1997 Jan; 10(1):107-13. PubMed ID: 9002274 [TBL] [Abstract][Full Text] [Related]
20. Pepper vein yellow virus P0 protein triggers NbHERC3, NbBax, and NbCRR mediated hypersensitive response. OuYang X; Wang L; Luo X; Li C; An X; Yao L; Huang W; Zhang Z; Zhang S; Liu Y; Wu S J Basic Microbiol; 2024 Jun; 64(6):e2400023. PubMed ID: 38558182 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]