These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Material properties of human lumbar intervertebral discs across strain rates. Newell N; Carpanen D; Grigoriadis G; Little JP; Masouros SD Spine J; 2019 Dec; 19(12):2013-2024. PubMed ID: 31326631 [TBL] [Abstract][Full Text] [Related]
3. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads. Wagnac E; Arnoux PJ; Garo A; El-Rich M; Aubin CE J Biomech Eng; 2011 Oct; 133(10):101007. PubMed ID: 22070332 [TBL] [Abstract][Full Text] [Related]
4. Finite element analyses of human vertebral bodies embedded in polymethylmethalcrylate or loaded via the hyperelastic intervertebral disc models provide equivalent predictions of experimental strength. Lu Y; Maquer G; Museyko O; Püschel K; Engelke K; Zysset P; Morlock M; Huber G J Biomech; 2014 Jul; 47(10):2512-6. PubMed ID: 24818795 [TBL] [Abstract][Full Text] [Related]
5. Influence of structural and material property uncertainties on biomechanics of intervertebral discs - Implications for disc tissue engineering. Wang W; Zhou C; Guo R; Cha T; Li G J Mech Behav Biomed Mater; 2021 Oct; 122():104661. PubMed ID: 34252706 [TBL] [Abstract][Full Text] [Related]
6. Patient-specific spine models. Part 1: Finite element analysis of the lumbar intervertebral disc--a material sensitivity study. Fagan MJ; Julian S; Siddall DJ; Mohsen AM Proc Inst Mech Eng H; 2002; 216(5):299-314. PubMed ID: 12365788 [TBL] [Abstract][Full Text] [Related]
7. The response surface method-genetic algorithm for identification of the lumbar intervertebral disc material parameters. Yang X; Cheng X; Liu Q; Zhang C; Song Y Comput Biol Med; 2020 Sep; 124():103920. PubMed ID: 32768715 [TBL] [Abstract][Full Text] [Related]
8. Finite element based nonlinear normalization of human lumbar intervertebral disc stiffness to account for its morphology. Maquer G; Laurent M; Brandejsky V; Pretterklieber ML; Zysset PK J Biomech Eng; 2014 Jun; 136(6):061003. PubMed ID: 24671515 [TBL] [Abstract][Full Text] [Related]
9. Ratcheting Behavior of Intervertebral Discs Under Cyclic Compression: Experiment and Prediction. Zhang CQ; Zhang T; Gao L; Du CF; Liu Q; Liu HY; Wang X Orthop Surg; 2019 Oct; 11(5):895-902. PubMed ID: 31663289 [TBL] [Abstract][Full Text] [Related]
10. Validation and application of an intervertebral disc finite element model utilizing independently constructed tissue-level constitutive formulations that are nonlinear, anisotropic, and time-dependent. Jacobs NT; Cortes DH; Peloquin JM; Vresilovic EJ; Elliott DM J Biomech; 2014 Aug; 47(11):2540-6. PubMed ID: 24998992 [TBL] [Abstract][Full Text] [Related]
11. A comparative study on the mechanical behavior of intervertebral disc using hyperelastic finite element model. Xie F; Zhou H; Zhao W; Huang L Technol Health Care; 2017 Jul; 25(S1):177-187. PubMed ID: 28582905 [TBL] [Abstract][Full Text] [Related]
12. Quasi-static and dynamic properties of the intervertebral disc: experimental study and model parameter determination for the porcine lumbar motion segment. Araújo ÂR; Peixinho N; Pinho AC; Claro JC Acta Bioeng Biomech; 2015; 17(4):59-66. PubMed ID: 26900017 [TBL] [Abstract][Full Text] [Related]
13. Application of the polynomial chaos expansion to approximate the homogenised response of the intervertebral disc. Karajan N; Otto D; Oladyshkin S; Ehlers W Biomech Model Mechanobiol; 2014 Oct; 13(5):1065-80. PubMed ID: 24553971 [TBL] [Abstract][Full Text] [Related]
14. What have we learned from finite element model studies of lumbar intervertebral discs in the past four decades? Schmidt H; Galbusera F; Rohlmann A; Shirazi-Adl A J Biomech; 2013 Sep; 46(14):2342-55. PubMed ID: 23962527 [TBL] [Abstract][Full Text] [Related]
15. Influence of experimental protocols on the mechanical properties of the intervertebral disc in unconfined compression. Recuerda M; Coté SP; Villemure I; Périé D J Biomech Eng; 2011 Jul; 133(7):071006. PubMed ID: 21823745 [TBL] [Abstract][Full Text] [Related]
16. Effective modulus of the human intervertebral disc and its effect on vertebral bone stress. Yang H; Jekir MG; Davis MW; Keaveny TM J Biomech; 2016 May; 49(7):1134-1140. PubMed ID: 26949100 [TBL] [Abstract][Full Text] [Related]
17. Regional annulus fibre orientations used as a tool for the calibration of lumbar intervertebral disc finite element models. Malandrino A; Noailly J; Lacroix D Comput Methods Biomech Biomed Engin; 2013; 16(9):923-8. PubMed ID: 22224724 [TBL] [Abstract][Full Text] [Related]
18. Influence of material properties on the mechanical behaviour of the L5-S1 intervertebral disc in compression: a nonlinear finite element study. Rao AA; Dumas GA J Biomed Eng; 1991 Mar; 13(2):139-51. PubMed ID: 2033950 [TBL] [Abstract][Full Text] [Related]
19. Impact of material and morphological parameters on the mechanical response of the lumbar spine - A finite element sensitivity study. Zander T; Dreischarf M; Timm AK; Baumann WW; Schmidt H J Biomech; 2017 Feb; 53():185-190. PubMed ID: 28010945 [TBL] [Abstract][Full Text] [Related]
20. Comparison of four methods to simulate swelling in poroelastic finite element models of intervertebral discs. Galbusera F; Schmidt H; Noailly J; Malandrino A; Lacroix D; Wilke HJ; Shirazi-Adl A J Mech Behav Biomed Mater; 2011 Oct; 4(7):1234-41. PubMed ID: 21783132 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]