BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 27810732)

  • 1. Tailored poly(ethylene) glycol dimethacrylate based shape memory polymer for orthopedic applications.
    Antony GJM; Jarali CS; Aruna ST; Raja S
    J Mech Behav Biomed Mater; 2017 Jan; 65():857-865. PubMed ID: 27810732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of the addition of diurethane dimethacrylate on the chemical and mechanical properties of tBA-PEGDMA acrylate based shape memory polymer network.
    Jerald Maria Antony G; Raja S; Aruna ST; Jarali CS
    J Mech Behav Biomed Mater; 2020 Oct; 110():103951. PubMed ID: 32957243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications.
    Yakacki CM; Shandas R; Lanning C; Rech B; Eckstein A; Gall K
    Biomaterials; 2007 May; 28(14):2255-63. PubMed ID: 17296222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tailored (meth)acrylate shape-memory polymer networks for ophthalmic applications.
    Song L; Hu W; Wang G; Niu G; Zhang H; Cao H; Wang K; Yang H; Zhu S
    Macromol Biosci; 2010 Oct; 10(10):1194-202. PubMed ID: 20625994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shape Memory Polymers Containing Higher Acrylate Content Display Increased Endothelial Cell Attachment.
    Govindarajan T; Shandas R
    Polymers (Basel); 2017 Nov; 9(11):. PubMed ID: 29707382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong, Tailored, Biocompatible Shape-Memory Polymer Networks.
    Yakacki CM; Shandas R; Safranski D; Ortega AM; Sassaman K; Gall K
    Adv Funct Mater; 2008 Aug; 18(16):2428-2435. PubMed ID: 19633727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of Shape Memory Polyurethane Properties in Cold Programming Process Towards Its Applications.
    Staszczak M; Urbański L; Cristea M; Ionita D; Pieczyska EA
    Polymers (Basel); 2024 Jan; 16(2):. PubMed ID: 38257020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biobased poly(propylene sebacate) as shape memory polymer with tunable switching temperature for potential biomedical applications.
    Guo B; Chen Y; Lei Y; Zhang L; Zhou WY; Rabie AB; Zhao J
    Biomacromolecules; 2011 Apr; 12(4):1312-21. PubMed ID: 21381645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Effect of POSS Type on the Shape Memory Properties of Epoxy-Based Nanocomposites.
    Bram AI; Gouzman I; Bolker A; Eliaz N; Verker R
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32937814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shape-memory polymer networks from oligo[(epsilon-hydroxycaproate)-co-glycolate]dimethacrylates and butyl acrylate with adjustable hydrolytic degradation rate.
    Kelch S; Steuer S; Schmidt AM; Lendlein A
    Biomacromolecules; 2007 Mar; 8(3):1018-27. PubMed ID: 17305394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytotoxicity and thermomechanical behavior of biomedical shape-memory polymer networks post-sterilization.
    Yakacki CM; Lyons MB; Rech B; Gall K; Shandas R
    Biomed Mater; 2008 Mar; 3(1):015010. PubMed ID: 18458497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermomechanics of the shape memory effect in polymers for biomedical applications.
    Gall K; Yakacki CM; Liu Y; Shandas R; Willett N; Anseth KS
    J Biomed Mater Res A; 2005 Jun; 73(3):339-48. PubMed ID: 15806564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent insights into the biomedical applications of shape-memory polymers.
    Serrano MC; Ameer GA
    Macromol Biosci; 2012 Sep; 12(9):1156-71. PubMed ID: 22887759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatically Programmable Shape-Memory Polymers Based on Asymmetric Swelling of Bilayer Structures.
    Tang J; Zhou Y; Wan L; Huang F
    Macromol Rapid Commun; 2018 May; 39(9):e1800039. PubMed ID: 29517176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Advances in Shape Memory Soft Materials for Biomedical Applications.
    Chan BQ; Low ZW; Heng SJ; Chan SY; Owh C; Loh XJ
    ACS Appl Mater Interfaces; 2016 Apr; 8(16):10070-87. PubMed ID: 27018814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Medical applications of shape memory polymers.
    Sokolowski W; Metcalfe A; Hayashi S; Yahia L; Raymond J
    Biomed Mater; 2007 Mar; 2(1):S23-7. PubMed ID: 18458416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Method for preparation, programming, and characterization of miniaturized particulate shape-memory polymer matrices.
    Wischke C; Lendlein A
    Langmuir; 2014 Mar; 30(10):2820-7. PubMed ID: 24564390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and characterization of bio-compatible shape memory polymers with potential applications to endovascular embolization of intracranial aneurysms.
    Kunkel R; Laurence D; Wang J; Robinson D; Scherrer J; Wu Y; Bohnstedt B; Chien A; Liu Y; Lee CH
    J Mech Behav Biomed Mater; 2018 Dec; 88():422-430. PubMed ID: 30216932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stretchable degradable and electroactive shape memory copolymers with tunable recovery temperature enhance myogenic differentiation.
    Deng Z; Guo Y; Zhao X; Li L; Dong R; Guo B; Ma PX
    Acta Biomater; 2016 Dec; 46():234-244. PubMed ID: 27640917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water-Triggered Stiffening of Shape-Memory Polyurethanes Composed of Hard Backbone Dangling PEG Soft Segments.
    Liu W; Wang A; Yang R; Wu H; Shao S; Chen J; Ma Y; Li Z; Wang Y; He X; Li J; Tan H; Fu Q
    Adv Mater; 2022 Nov; 34(46):e2201914. PubMed ID: 35502474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.