BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 27811081)

  • 21. Arabidopsis Hsa32, a novel heat shock protein, is essential for acquired thermotolerance during long recovery after acclimation.
    Charng YY; Liu HC; Liu NY; Hsu FC; Ko SS
    Plant Physiol; 2006 Apr; 140(4):1297-305. PubMed ID: 16500991
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heat shock transcription factor A1b regulates heat tolerance in wheat and Arabidopsis through OPR3 and jasmonate signalling pathway.
    Tian X; Wang F; Zhao Y; Lan T; Yu K; Zhang L; Qin Z; Hu Z; Yao Y; Ni Z; Sun Q; Rossi V; Peng H; Xin M
    Plant Biotechnol J; 2020 May; 18(5):1109-1111. PubMed ID: 31559685
    [No Abstract]   [Full Text] [Related]  

  • 23. Identification of Heat Shock Transcription Factor Genes Involved in Thermotolerance of Octoploid Cultivated Strawberry.
    Liao WY; Lin LF; Jheng JL; Wang CC; Yang JH; Chou ML
    Int J Mol Sci; 2016 Dec; 17(12):. PubMed ID: 27999304
    [TBL] [Abstract][Full Text] [Related]  

  • 24. HSP101: a key component for the acquisition of thermotolerance in plants.
    Gurley WB
    Plant Cell; 2000 Apr; 12(4):457-60. PubMed ID: 10760235
    [No Abstract]   [Full Text] [Related]  

  • 25. Phospholipid:Diacylglycerol Acyltransferase-Mediated Triacylglyerol Synthesis Augments Basal Thermotolerance.
    Mueller SP; Unger M; Guender L; Fekete A; Mueller MJ
    Plant Physiol; 2017 Sep; 175(1):486-497. PubMed ID: 28733391
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Axial and Radial Oxylipin Transport.
    Gasperini D; Chauvin A; Acosta IF; Kurenda A; Stolz S; Chételat A; Wolfender JL; Farmer EE
    Plant Physiol; 2015 Nov; 169(3):2244-54. PubMed ID: 26338953
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Emerging trade-offs - impact of photoprotectants (PsbS, xanthophylls, and vitamin E) on oxylipins as regulators of development and defense.
    Demmig-Adams B; Cohu CM; Amiard V; Zadelhoff G; Veldink GA; Muller O; Adams WW
    New Phytol; 2013 Feb; 197(3):720-9. PubMed ID: 23418633
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato.
    Mishra SK; Tripp J; Winkelhaus S; Tschiersch B; Theres K; Nover L; Scharf KD
    Genes Dev; 2002 Jun; 16(12):1555-67. PubMed ID: 12080093
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Histone chaperone ASF1 is involved in gene transcription activation in response to heat stress in Arabidopsis thaliana.
    Weng M; Yang Y; Feng H; Pan Z; Shen WH; Zhu Y; Dong A
    Plant Cell Environ; 2014 Sep; 37(9):2128-38. PubMed ID: 24548003
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Global Gene-Expression Analysis to Identify Differentially Expressed Genes Critical for the Heat Stress Response in Brassica rapa.
    Dong X; Yi H; Lee J; Nou IS; Han CT; Hur Y
    PLoS One; 2015; 10(6):e0130451. PubMed ID: 26102990
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A positive feedback loop between HEAT SHOCK PROTEIN101 and HEAT STRESS-ASSOCIATED 32-KD PROTEIN modulates long-term acquired thermotolerance illustrating diverse heat stress responses in rice varieties.
    Lin MY; Chai KH; Ko SS; Kuang LY; Lur HS; Charng YY
    Plant Physiol; 2014 Apr; 164(4):2045-53. PubMed ID: 24520156
    [TBL] [Abstract][Full Text] [Related]  

  • 32. TGA2 signaling in response to reactive electrophile species is not dependent on cysteine modification of TGA2.
    Findling S; Stotz HU; Zoeller M; Krischke M; Zander M; Gatz C; Berger S; Mueller MJ
    PLoS One; 2018; 13(4):e0195398. PubMed ID: 29608605
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Involvement of Arabidopsis ROF2 (FKBP65) in thermotolerance.
    Meiri D; Tazat K; Cohen-Peer R; Farchi-Pisanty O; Aviezer-Hagai K; Avni A; Breiman A
    Plant Mol Biol; 2010 Jan; 72(1-2):191-203. PubMed ID: 19876748
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Arabidopsis jasmonate signaling pathway.
    Gfeller A; Liechti R; Farmer EE
    Sci STKE; 2006 Feb; 2006(322):cm1. PubMed ID: 16478935
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modulation of heat shock factors accompanies salicylic acid-mediated potentiation of Hsp70 in tomato seedlings.
    Snyman M; Cronjé MJ
    J Exp Bot; 2008; 59(8):2125-32. PubMed ID: 18468986
    [TBL] [Abstract][Full Text] [Related]  

  • 36. AtHsc70-1 negatively regulates the basal heat tolerance in Arabidopsis thaliana through affecting the activity of HsfAs and Hsp101.
    Tiwari LD; Khungar L; Grover A
    Plant J; 2020 Sep; 103(6):2069-2083. PubMed ID: 32573848
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A new mutant of Arabidopsis disturbed in its roots, right-handed slanting, and gravitropism defines a gene that encodes a heat-shock factor.
    Fortunati A; Piconese S; Tassone P; Ferrari S; Migliaccio F
    J Exp Bot; 2008; 59(6):1363-74. PubMed ID: 18381353
    [TBL] [Abstract][Full Text] [Related]  

  • 38. EXB1/WRKY71 transcription factor regulates both shoot branching and responses to abiotic stresses.
    Guo D; Qin G
    Plant Signal Behav; 2016; 11(3):e1150404. PubMed ID: 26914912
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional analysis of OsHSBP1 and OsHSBP2 revealed their involvement in the heat shock response in rice (Oryza sativa L.).
    Rana RM; Dong S; Tang H; Ahmad F; Zhang H
    J Exp Bot; 2012 Oct; 63(16):6003-16. PubMed ID: 22996677
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance.
    Li S; Fu Q; Chen L; Huang W; Yu D
    Planta; 2011 Jun; 233(6):1237-52. PubMed ID: 21336597
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.