These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 2781146)

  • 1. Inhibition of yeast glyoxalase I by biologically active peptides.
    Kraus JL; Castaing M
    Res Commun Chem Pathol Pharmacol; 1989 Jul; 65(1):105-10. PubMed ID: 2781146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and biological activity of a new squaric acid-formylmethionine peptide conjugate.
    Kraus JL; Castaing M
    Res Commun Chem Pathol Pharmacol; 1989 Aug; 65(2):229-36. PubMed ID: 2587840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of glyoxalase I by various clinically used anticancer drugs.
    Kraus JL; Pernice P; Ponce C
    Res Commun Chem Pathol Pharmacol; 1988 Mar; 59(3):419-22. PubMed ID: 3363227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of glyoxalase I by new squaric acid derivatives.
    Kraus JL; Castaing M
    Res Commun Chem Pathol Pharmacol; 1989 Mar; 63(3):467-70. PubMed ID: 2727397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid alpha/beta-peptides: for-Met-Leu-Phe-OMe analogues containing geminally disubstituted beta2,2- and beta 3,3-amino acids at the central position.
    Mollica A; Paglialunga Paradisi M; Torino D; Spisani S; Lucente G
    Amino Acids; 2006 Jun; 30(4):453-9. PubMed ID: 16547648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal copoly(amino acids) as inhibitors of glyoxalase I.
    Fox SW; Syren RM; Windsor CR
    Ciba Found Symp; 1978; (67):175-93. PubMed ID: 259497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation on glyoxalase I inhibitors.
    Barnard JF; Honek JF
    Biochem Biophys Res Commun; 1989 Nov; 165(1):118-24. PubMed ID: 2686643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glyoxalase I: mechanism-based inhibitors.
    Jordan F; Cohen JF; Wang CT; Wilmott JM; Hall SS; Foxall DL
    Drug Metab Rev; 1983; 14(4):723-40. PubMed ID: 6352223
    [No Abstract]   [Full Text] [Related]  

  • 9. Oxidized N-formylmethionyl-leucyl-phenylalanine: effect on the activation of human monocyte and neutrophil chemotaxis and superoxide production.
    Harvath L; Aksamit RR
    J Immunol; 1984 Sep; 133(3):1471-6. PubMed ID: 6086757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The importance of the peptide bond at position 2 in HCO-Met-Leu-Phe-OMe analogues as shown by studies on human neutrophils.
    Cavicchioni G; Breveglieri A; Boggian M; Vertuani G; Reali E; Spisani S
    J Pept Sci; 1996; 2(3):135-40. PubMed ID: 9231322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of synthetic peptides derived from the PKI55 protein, a protein kinase C modulator, in human neutrophils stimulated by the methyl ester derivative of the hydrophobic N-formyl tripeptide for-Met-Leu-Phe-OH.
    Selvatici R; Falzarano S; Franceschetti L; Mollica A; Guerrini R; Siniscalchi A; Spisani S
    FEBS J; 2008 Feb; 275(3):449-57. PubMed ID: 18167144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. QSAR of the inhibition of glyoxalase by S-substituted glutathiones.
    Silipo C; Hansch C
    Farmaco Sci; 1979 Jan; 34(1):3-10. PubMed ID: 553818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, conformation and biological activity of centrally modified pseudopeptidic analogues of For-Met-Leu-Phe-OMe.
    Giordano C; Lucente G; Masi A; Paglialunga Paradisi M; Sansone A; Spisani S
    Amino Acids; 2007 Sep; 33(3):477-87. PubMed ID: 17021652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leukocyte inhibitory factor (LIF) potentiates neutrophil responses to formyl-methionyl-leucyl-phenylalanine.
    Borish L; O'Reilly D; Klempner MS; Rocklin RE
    J Immunol; 1986 Sep; 137(6):1897-903. PubMed ID: 3018081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of mammalian glyoxalase I (lactoylglutathione lyase) by N-acylated S-blocked glutathione derivatives as a probe for the role of the N-site of glutathione in glyoxalase I mechanism.
    Al-Timari A; Douglas KT
    Biochim Biophys Acta; 1986 Mar; 870(1):160-8. PubMed ID: 3947646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. For-Met-Lys-Phe-For-Met-Lys-Phe-: a new cyclic analogue of the chemotactic formylpeptides.
    Torrini I; Zecchini GP; Paradisi MP; Lucente G; Gavuzzo E; Mazza F; Pochetti G; Traniello S; Spisani S
    Biopolymers; 1995 Apr; 35(4):347-58. PubMed ID: 7711275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid alpha/beta3-peptides with proteinogenic side chains. Monosubstituted analogues of the chemotactic tripeptide For-Met-Leu-Phe-OMe.
    Giordano C; Lucente G; Mollica A; Nalli M; Pagani Zecchini G; Paglialunga Paradisi M; Gavuzzo E; Mazza F; Spisani S
    J Pept Sci; 2004 Aug; 10(8):510-23. PubMed ID: 15347138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Partial transition-state inhibitors of glyoxalase I from human erythrocytes, yeast and rat liver.
    Douglas KT; Gohel DI; Nadvi IN; Quilter AJ; Seddon AP
    Biochim Biophys Acta; 1985 May; 829(1):109-18. PubMed ID: 3888271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and kinetic evaluation of S- and N-substituted cysteinylglycines as inhibitors of glyoxalase I.
    Lyon PA; Vince R
    J Med Chem; 1977 Jan; 20(1):77-88. PubMed ID: 833829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer-automated structure evaluation of flavonoids and other structurally related compounds as glyoxalase I enzyme inhibitors.
    Klopman G; Dimayuga ML
    Mol Pharmacol; 1988 Aug; 34(2):218-22. PubMed ID: 3412324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.