BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 27811944)

  • 21. Yeast SREBP cleavage activation requires the Golgi Dsc E3 ligase complex.
    Stewart EV; Nwosu CC; Tong Z; Roguev A; Cummins TD; Kim DU; Hayles J; Park HO; Hoe KL; Powell DW; Krogan NJ; Espenshade PJ
    Mol Cell; 2011 Apr; 42(2):160-71. PubMed ID: 21504829
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PAQR3 modulates cholesterol homeostasis by anchoring Scap/SREBP complex to the Golgi apparatus.
    Xu D; Wang Z; Zhang Y; Jiang W; Pan Y; Song BL; Chen Y
    Nat Commun; 2015 Aug; 6():8100. PubMed ID: 26311497
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mga2 Transcription Factor Regulates an Oxygen-responsive Lipid Homeostasis Pathway in Fission Yeast.
    Burr R; Stewart EV; Shao W; Zhao S; Hannibal-Bach HK; Ejsing CS; Espenshade PJ
    J Biol Chem; 2016 Jun; 291(23):12171-83. PubMed ID: 27053105
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of luminal Loop 1 of Scap protein as the sterol sensor that maintains cholesterol homeostasis.
    Motamed M; Zhang Y; Wang ML; Seemann J; Kwon HJ; Goldstein JL; Brown MS
    J Biol Chem; 2011 May; 286(20):18002-12. PubMed ID: 21454655
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The sterol-sensing endoplasmic reticulum (ER) membrane protein TRC8 hampers ER to Golgi transport of sterol regulatory element-binding protein-2 (SREBP-2)/SREBP cleavage-activated protein and reduces SREBP-2 cleavage.
    Irisawa M; Inoue J; Ozawa N; Mori K; Sato R
    J Biol Chem; 2009 Oct; 284(42):28995-9004. PubMed ID: 19706601
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heat Shock Protein 90 Modulates Lipid Homeostasis by Regulating the Stability and Function of Sterol Regulatory Element-binding Protein (SREBP) and SREBP Cleavage-activating Protein.
    Kuan YC; Hashidume T; Shibata T; Uchida K; Shimizu M; Inoue J; Sato R
    J Biol Chem; 2017 Feb; 292(7):3016-3028. PubMed ID: 28003358
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxygen-dependent, alternative promoter controls translation of tco1+ in fission yeast.
    Sehgal A; Hughes BT; Espenshade PJ
    Nucleic Acids Res; 2008 Apr; 36(6):2024-31. PubMed ID: 18276645
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glutamine stimulates the gene expression and processing of sterol regulatory element binding proteins, thereby increasing the expression of their target genes.
    Inoue J; Ito Y; Shimada S; Satoh SI; Sasaki T; Hashidume T; Kamoshida Y; Shimizu M; Sato R
    FEBS J; 2011 Aug; 278(15):2739-50. PubMed ID: 21696544
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assaying Sterol-Regulated ER-to-Golgi Transport of SREBP Cleavage-Activating Protein Using Immunofluorescence Microscopy.
    Ishida CT; Shao W; Espenshade PJ
    Methods Mol Biol; 2023; 2557():755-764. PubMed ID: 36512249
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dipyridamole Inhibits Lipogenic Gene Expression by Retaining SCAP-SREBP in the Endoplasmic Reticulum.
    Esquejo RM; Roqueta-Rivera M; Shao W; Phelan PE; Seneviratne U; Am Ende CW; Hershberger PM; Machamer CE; Espenshade PJ; Osborne TF
    Cell Chem Biol; 2021 Feb; 28(2):169-179.e7. PubMed ID: 33096051
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Activation of mTOR modulates SREBP-2 to induce foam cell formation through increased retinoblastoma protein phosphorylation.
    Ma KL; Liu J; Wang CX; Ni J; Zhang Y; Wu Y; Lv LL; Ruan XZ; Liu BC
    Cardiovasc Res; 2013 Dec; 100(3):450-60. PubMed ID: 24068000
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Golgi rhomboid protease Rbd2 recruits Cdc48 to cleave yeast SREBP.
    Hwang J; Ribbens D; Raychaudhuri S; Cairns L; Gu H; Frost A; Urban S; Espenshade PJ
    EMBO J; 2016 Nov; 35(21):2332-2349. PubMed ID: 27655872
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Point mutation in luminal loop 7 of Scap protein blocks interaction with loop 1 and abolishes movement to Golgi.
    Zhang Y; Motamed M; Seemann J; Brown MS; Goldstein JL
    J Biol Chem; 2013 May; 288(20):14059-14067. PubMed ID: 23564452
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cideb controls sterol-regulated ER export of SREBP/SCAP by promoting cargo loading at ER exit sites.
    Su L; Zhou L; Chen FJ; Wang H; Qian H; Sheng Y; Zhu Y; Yu H; Gong X; Cai L; Yang X; Xu L; Zhao TJ; Li JZ; Chen XW; Li P
    EMBO J; 2019 Apr; 38(8):. PubMed ID: 30858281
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: oxysterols block transport by binding to Insig.
    Radhakrishnan A; Ikeda Y; Kwon HJ; Brown MS; Goldstein JL
    Proc Natl Acad Sci U S A; 2007 Apr; 104(16):6511-8. PubMed ID: 17428920
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Insig regulates HMG-CoA reductase by controlling enzyme phosphorylation in fission yeast.
    Burg JS; Powell DW; Chai R; Hughes AL; Link AJ; Espenshade PJ
    Cell Metab; 2008 Dec; 8(6):522-31. PubMed ID: 19041767
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ring finger protein 5 activates sterol regulatory element-binding protein 2 (SREBP2) to promote cholesterol biosynthesis via inducing polyubiquitination of SREBP chaperone SCAP.
    Kuan YC; Takahashi Y; Maruyama T; Shimizu M; Yamauchi Y; Sato R
    J Biol Chem; 2020 Mar; 295(12):3918-3928. PubMed ID: 32054686
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Endoplasmic Reticulum Exit of Golgi-resident Defective for SREBP Cleavage (Dsc) E3 Ligase Complex Requires Its Activity.
    Raychaudhuri S; Espenshade PJ
    J Biol Chem; 2015 Jun; 290(23):14430-40. PubMed ID: 25918164
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Retrospective on Cholesterol Homeostasis: The Central Role of Scap.
    Brown MS; Radhakrishnan A; Goldstein JL
    Annu Rev Biochem; 2018 Jun; 87():783-807. PubMed ID: 28841344
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Haploid genetic screens identify SPRING/C12ORF49 as a determinant of SREBP signaling and cholesterol metabolism.
    Loregger A; Raaben M; Nieuwenhuis J; Tan JME; Jae LT; van den Hengel LG; Hendrix S; van den Berg M; Scheij S; Song JY; Huijbers IJ; Kroese LJ; Ottenhoff R; van Weeghel M; van de Sluis B; Brummelkamp T; Zelcer N
    Nat Commun; 2020 Feb; 11(1):1128. PubMed ID: 32111832
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.