These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 27811954)

  • 61. Thermoelectric performance enhancement of calcium cobaltite through barium grain boundary segregation.
    Carvillo P; Chen Y; Boyle C; Barnes PN; Song X
    Inorg Chem; 2015 Sep; 54(18):9027-32. PubMed ID: 26357956
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Adjusting the thermoelectric properties of copper(I) oxide-graphite-polymer pastes and the applications of such flexible composites.
    Andrei V; Bethke K; Rademann K
    Phys Chem Chem Phys; 2016 Apr; 18(16):10700-7. PubMed ID: 26967595
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Ultrahigh Average Thermoelectric Figure of Merit, Low Lattice Thermal Conductivity and Enhanced Microhardness in Nanostructured (GeTe)
    Samanta M; Roychowdhury S; Ghatak J; Perumal S; Biswas K
    Chemistry; 2017 Jun; 23(31):7438-7443. PubMed ID: 28436062
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Fluorene-Based Two-Dimensional Covalent Organic Framework with Thermoelectric Properties through Doping.
    Wang L; Dong B; Ge R; Jiang F; Xu J
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7108-7114. PubMed ID: 28192662
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Effect of aluminum on the thermoelectric properties of nanostructured PbTe.
    Zhang Q; Yang S; Zhang Q; Chen S; Liu W; Wang H; Tian Z; Broido D; Chen G; Ren Z
    Nanotechnology; 2013 Aug; 24(34):345705. PubMed ID: 23912680
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Structural stability and thermoelectric performance of high quality synthetic and natural pyrites (FeS
    Zuñiga-Puelles E; Cardoso-Gil R; Bobnar M; Veremchuk I; Himcinschi C; Hennig C; Kortus J; Heide G; Gumeniuk R
    Dalton Trans; 2019 Jul; 48(28):10703-10713. PubMed ID: 31243411
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Enhancing the thermoelectric power factor of nanostructured ZnCo
    Alagar Nedunchezhian AS; Sidharth D; Rajkumar R; Yalini Devi N; Maeda K; Arivanandhan M; Fujiwara K; Anbalagan G; Jayavel R
    RSC Adv; 2020 May; 10(32):18769-18775. PubMed ID: 35518284
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Ternary metal selenide/MWCNT/PANI: potential n-type nanohybrids for room-temperature thermoelectric applications.
    Kshirsagar AS; More PV; Dey A; Khanna PK
    Dalton Trans; 2019 Oct; 48(38):14497-14504. PubMed ID: 31531478
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Enhancing the Thermoelectric Performance of Calcium Cobaltite Ceramics by Tuning Composition and Processing.
    Yu J; Chen K; Azough F; Alvarez-Ruiz DT; Reece MJ; Freer R
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):47634-47646. PubMed ID: 33026220
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Facile general route toward tunable Magnéli nanostructures and their use as thermoelectric metal oxide/carbon nanocomposites.
    Portehault D; Maneeratana V; Candolfi C; Oeschler N; Veremchuk I; Grin Y; Sanchez C; Antonietti M
    ACS Nano; 2011 Nov; 5(11):9052-61. PubMed ID: 21978378
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Ionic Liquid-Based Low-Temperature Synthesis of Phase-Pure Tetradymite-Type Materials and Their Thermoelectric Properties.
    Loor M; Salloum S; Kawulok P; Izadi S; Bendt G; Guschlbauer J; Sundermeyer J; Perez N; Nielsch K; Schierning G; Schulz S
    Inorg Chem; 2020 Mar; 59(6):3428-3436. PubMed ID: 31967797
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Enhanced thermoelectric figure of merit in stannite-kuramite solid solutions Cu(2+x)Fe(1-x)SnS(4-y) (x = 0-1) with anisotropy lowering.
    Goto Y; Naito F; Sato R; Yoshiyasu K; Itoh T; Kamihara Y; Matoba M
    Inorg Chem; 2013 Sep; 52(17):9861-6. PubMed ID: 23931285
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Glassy thermal conductivity in the two-phase Cu(x)Ag(3-x)SbSeTe(2) alloy and high temperature thermoelectric behavior.
    Drymiotis F; Drye T; Rhodes D; Zhang Q; Lashey JC; Wang Y; Cawthorne S; Ma B; Lindsey S; Tritt T
    J Phys Condens Matter; 2010 Jan; 22(3):035801. PubMed ID: 21386296
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Fully automated measurement setup for non-destructive characterization of thermoelectric materials near room temperature.
    Schwyter ES; Helbling T; Glatz W; Hierold C
    Rev Sci Instrum; 2012 Jul; 83(7):074904. PubMed ID: 22852715
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A Facile Surfactant-Assisted Reflux Method for the Synthesis of Single-Crystalline Sb2Te3 Nanostructures with Enhanced Thermoelectric Performance.
    Yang HQ; Miao L; Liu CY; Li C; Honda S; Iwamoto Y; Huang R; Tanemura S
    ACS Appl Mater Interfaces; 2015 Jul; 7(26):14263-71. PubMed ID: 26060933
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Thermoelectric properties of porous multi-walled carbon nanotube/polyaniline core/shell nanocomposites.
    Zhang K; Davis M; Qiu J; Hope-Weeks L; Wang S
    Nanotechnology; 2012 Sep; 23(38):385701. PubMed ID: 22947620
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Enhanced high-temperature thermoelectric performance of Yb(14-x)Ca(x)MnSb11.
    Uvarov CA; Ortega-Alvarez F; Kauzlarich SM
    Inorg Chem; 2012 Jul; 51(14):7617-24. PubMed ID: 22755507
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Synthesis of thermoelectric magnesium-silicide pastes for 3D printing, electrospinning and low-pressure spray.
    Marques AC; Miglietta D; Gaspar G; Baptista AC; Gaspar A; Perdigão P; Soares I; Bianchi C; Sousa D; Faustino BMM; Amaral VS; Santos T; Gonçalves AP; da Silva RC; Giorgis F; Ferreira I
    Mater Renew Sustain Energy; 2019; 8(4):21. PubMed ID: 31815087
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Thermoelectric Transport Properties of Fe-Enriched ZnO with High-Temperature Nanostructure Refinement.
    Liang X
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):7927-37. PubMed ID: 25839985
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Colossal positive Seebeck coefficient and low thermal conductivity in reduced TiO(2).
    Tang J; Wang W; Zhao GL; Li Q
    J Phys Condens Matter; 2009 May; 21(20):205703. PubMed ID: 21825536
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.