BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 27812002)

  • 1. On-chip, multisite extracellular and intracellular recordings from primary cultured skeletal myotubes.
    Rabieh N; Ojovan SM; Shmoel N; Erez H; Maydan E; Spira ME
    Sci Rep; 2016 Nov; 6():36498. PubMed ID: 27812002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-chip electroporation, membrane repair dynamics and transient in-cell recordings by arrays of gold mushroom-shaped microelectrodes.
    Hai A; Spira ME
    Lab Chip; 2012 Aug; 12(16):2865-73. PubMed ID: 22678065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward on-chip, in-cell recordings from cultured cardiomyocytes by arrays of gold mushroom-shaped microelectrodes.
    Fendyur A; Spira ME
    Front Neuroeng; 2012; 5():21. PubMed ID: 22936913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multisite Intracellular Recordings by MEA.
    Spira ME; Huang SH; Shmoel N; Erez H
    Adv Neurobiol; 2019; 22():125-153. PubMed ID: 31073934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of Essential Ultrastructural Interface between Cultured Hippocampal Cells and Gold Mushroom-Shaped MEA- Toward "IN-CELL" Recordings from Vertebrate Neurons.
    Fendyur A; Mazurski N; Shappir J; Spira ME
    Front Neuroeng; 2011; 4():14. PubMed ID: 22163219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A feasibility study of multi-site,intracellular recordings from mammalian neurons by extracellular gold mushroom-shaped microelectrodes.
    Ojovan SM; Rabieh N; Shmoel N; Erez H; Maydan E; Cohen A; Spira ME
    Sci Rep; 2015 Sep; 5():14100. PubMed ID: 26365404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Skeletal myotube integration with planar microelectrode arrays in vitro for spatially selective recording and stimulation: a comparison of neuronal and myotube extracellular action potentials.
    Langhammer CG; Kutzing MK; Luo V; Zahn JD; Firestein BL
    Biotechnol Prog; 2011; 27(3):891-5. PubMed ID: 21574266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multisite electrophysiological recordings by self-assembled loose-patch-like junctions between cultured hippocampal neurons and mushroom-shaped microelectrodes.
    Shmoel N; Rabieh N; Ojovan SM; Erez H; Maydan E; Spira ME
    Sci Rep; 2016 Jun; 6():27110. PubMed ID: 27256971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multisite Attenuated Intracellular Recordings by Extracellular Multielectrode Arrays, a Perspective.
    Spira ME; Shmoel N; Huang SM; Erez H
    Front Neurosci; 2018; 12():212. PubMed ID: 29692701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A topographically modified substrate-embedded MEA for directed myotube formation at electrode contact sites.
    Langhammer CG; Kutzing MK; Luo V; Zahn JD; Firestein BL
    Ann Biomed Eng; 2013 Feb; 41(2):408-20. PubMed ID: 22956161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cultured myotubes from skeletal muscle of adult rats. Characterization and action of Anemonia sulcata toxin II.
    Tesseraux I; Gülden M; Wassermann O
    Naunyn Schmiedebergs Arch Pharmacol; 1987 Aug; 336(2):232-9. PubMed ID: 2446151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrinsic ionic conductances mediate the spontaneous electrical activity of cultured mouse myotubes.
    Sciancalepore M; Afzalov R; Buzzin V; Jurdana M; Lorenzon P; Ruzzier F
    Biochim Biophys Acta; 2005 Dec; 1720(1-2):117-24. PubMed ID: 16414008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discoordinate regulation of different K channels in cultured rat skeletal muscle by nerve growth factor.
    Vigdor-Alboim S; Rothman C; Braiman L; Bak A; Langzam L; Yosef O; Sterengarz BB; Nawrath H; Brodie C; Sampson SR
    J Neurosci Res; 1999 May; 56(3):275-83. PubMed ID: 10336257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracellular Recording of Cardiomyocyte Action Potentials with Nanopatterned Volcano-Shaped Microelectrode Arrays.
    Desbiolles BXE; de Coulon E; Bertsch A; Rohr S; Renaud P
    Nano Lett; 2019 Sep; 19(9):6173-6181. PubMed ID: 31424942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-Term High-Density Extracellular Recordings Enable Studies of Muscle Cell Physiology.
    Lewandowska MK; Bogatikov E; Hierlemann AR; Punga AR
    Front Physiol; 2018; 9():1424. PubMed ID: 30356837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Independent positioning of microelectrodes for multisite recordings in vitro.
    Albus K; Sinske K; Heinemann U
    J Neurosci Methods; 2009 Jan; 176(2):182-5. PubMed ID: 18822315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term, multisite, parallel, in-cell recording and stimulation by an array of extracellular microelectrodes.
    Hai A; Shappir J; Spira ME
    J Neurophysiol; 2010 Jul; 104(1):559-68. PubMed ID: 20427620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular recording of cardiomyocyte action potentials by nanobranched microelectrode array.
    Hu N; Xu D; Fang J; Li H; Mo J; Zhou M; Li B; Chen HJ; Zhang T; Feng J; Hang T; Xia W; Chen X; Liu X; He G; Xie X
    Biosens Bioelectron; 2020 Dec; 169():112588. PubMed ID: 32956905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ca2+-dependent excitation-contraction coupling triggered by the heterologous cardiac/brain DHPR beta2a-subunit in skeletal myotubes.
    Sheridan DC; Carbonneau L; Ahern CA; Nataraj P; Coronado R
    Biophys J; 2003 Dec; 85(6):3739-57. PubMed ID: 14645065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological application of microelectrode arrays in drug discovery and basic research.
    Stett A; Egert U; Guenther E; Hofmann F; Meyer T; Nisch W; Haemmerle H
    Anal Bioanal Chem; 2003 Oct; 377(3):486-95. PubMed ID: 12923608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.