These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 27812466)

  • 1. Ambient Aqueous Growth of Cu
    Han C; Bai Y; Sun Q; Zhang S; Li Z; Wang L; Dou S
    Adv Sci (Weinh); 2016 May; 3(5):1500350. PubMed ID: 27812466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Room-temperature synthesis of Cu(2-x)E (E = S, Se) nanotubes with hierarchical architecture as high-performance counter electrodes of quantum-dot-sensitized solar cells.
    Chen XQ; Li Z; Bai Y; Sun Q; Wang LZ; Dou SX
    Chemistry; 2015 Jan; 21(3):1055-63. PubMed ID: 25400022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel Nanoarchitectured Cu
    Lee DJ; Mohan Kumar G; Ganesh V; Jeon HC; Kim DY; Kang TW; Ilanchezhiyan P
    Nanomaterials (Basel); 2022 Sep; 12(18):. PubMed ID: 36144977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ambient Synthesis of One-/Two-Dimensional CuAgSe Ternary Nanotubes as Counter Electrodes of Quantum-Dot-Sensitized Solar Cells.
    Chen XQ; Bai Y; Li Z; Wang LZ; Dou SX
    Chempluschem; 2016 Apr; 81(4):414-420. PubMed ID: 31968756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High Electrocatalytic Activity of Vertically Aligned Single-Walled Carbon Nanotubes towards Sulfide Redox Shuttles.
    Hao F; Dong P; Zhang J; Zhang Y; Loya PE; Hauge RH; Li J; Lou J; Lin H
    Sci Rep; 2012; 2():368. PubMed ID: 22509466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scalable Edge-Oriented Metallic Two-Dimensional Layered Cu
    Wang H; Zhan G; Tang C; Yang D; Liu W; Wang D; Wu Y; Wang H; Liu K; Li J; Huang M; Chen K
    ACS Nano; 2023 Mar; 17(5):4790-4799. PubMed ID: 36779886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrathin FeSe2 nanosheets: controlled synthesis and application as a heterogeneous catalyst in dye-sensitized solar cells.
    Huang S; He Q; Chen W; Qiao Q; Zai J; Qian X
    Chemistry; 2015 Mar; 21(10):4085-91. PubMed ID: 25640264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scalable low-cost SnS(2) nanosheets as counter electrode building blocks for dye-sensitized solar cells.
    Bai Y; Zong X; Yu H; Chen ZG; Wang L
    Chemistry; 2014 Jul; 20(28):8670-6. PubMed ID: 24924927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A versatile chemical conversion synthesis of Cu2S nanotubes and the photovoltaic activities for dye-sensitized solar cell.
    Shuai X; Shen W; Hou Z; Ke S; Xu C; Jiang C
    Nanoscale Res Lett; 2014; 9(1):513. PubMed ID: 25246878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of Semimetallic Cobalt Telluride Nanotube Film via Anion Exchange Tellurization Strategy in Aqueous Solution for Electrocatalytic Applications.
    Patil SA; Kim EK; Shrestha NK; Chang J; Lee JK; Han SH
    ACS Appl Mater Interfaces; 2015 Nov; 7(46):25914-22. PubMed ID: 26524092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoporous hollow transition metal chalcogenide nanosheets synthesized via the anion-exchange reaction of metal hydroxides with chalcogenide ions.
    Zhao W; Zhang C; Geng F; Zhuo S; Zhang B
    ACS Nano; 2014 Oct; 8(10):10909-19. PubMed ID: 25283816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ catalytic activity of CuO nanosheets synthesized from a surfactant-lamellar template.
    Jang KS; Kim JD
    J Nanosci Nanotechnol; 2011 May; 11(5):4496-500. PubMed ID: 21780485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactively sputtered nickel nitride as electrocatalytic counter electrode for dye- and quantum dot-sensitized solar cells.
    Soo Kang J; Park MA; Kim JY; Ha Park S; Young Chung D; Yu SH; Kim J; Park J; Choi JW; Jae Lee K; Jeong J; Jae Ko M; Ahn KS; Sung YE
    Sci Rep; 2015 May; 5():10450. PubMed ID: 25994801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly electrocatalytic Cu₂ZnSn(S₁-xSex)₄ counter electrodes for quantum-dot-sensitized solar cells.
    Cao Y; Xiao Y; Jung JY; Um HD; Jee SW; Choi HM; Bang JH; Lee JH
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):479-84. PubMed ID: 23298364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermoelectric Properties of Cu
    Jung YJ; Kim HS; Won JH; Kim M; Kang M; Jang EY; Binh NV; Kim SI; Moon KS; Roh JW; Nam WH; Koo SM; Oh JM; Cho JY; Shin WH
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High electrocatalytic activity of self-standing hollow NiCo2S4 single crystalline nanorod arrays towards sulfide redox shuttles in quantum dot-sensitized solar cells.
    Xiao J; Zeng X; Chen W; Xiao F; Wang S
    Chem Commun (Camb); 2013 Dec; 49(100):11734-6. PubMed ID: 23925352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Review of Transition Metal Sulfides as Counter Electrodes for Dye-Sensitized and Quantum Dot-Sensitized Solar Cells.
    Kharboot LH; Fadil NA; Bakar TAA; Najib ASM; Nordin NH; Ghazali H
    Materials (Basel); 2023 Apr; 16(7):. PubMed ID: 37049175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Earth-Abundant Cobalt Pyrite (CoS2) Thin Film on Glass as a Robust, High-Performance Counter Electrode for Quantum Dot-Sensitized Solar Cells.
    Faber MS; Park K; Cabán-Acevedo M; Santra PK; Jin S
    J Phys Chem Lett; 2013 Jun; 4(11):1843-9. PubMed ID: 26283119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile synthesis of ultrathin two-dimensional nanosheets-constructed MCo
    Ding E; Li A; Liu H; Liu W; Chen F; Li T; Wang B
    Nanoscale; 2018 Feb; 10(8):3871-3876. PubMed ID: 29417974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of strain and thickness on the mechanical, electronic, and optical properties of Cu
    Zhou H; Gao L; He S; Zhang Y; Geng J; Lu J; Cai J
    Phys Chem Chem Phys; 2024 Feb; 26(6):5429-5437. PubMed ID: 38275021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.