These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 27812478)

  • 1. Radiative Cooling: Principles, Progress, and Potentials.
    Hossain MM; Gu M
    Adv Sci (Weinh); 2016 Jul; 3(7):1500360. PubMed ID: 27812478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectrally Selective Nanoparticle Mixture Coating for Passive Daytime Radiative Cooling.
    Chae D; Lim H; So S; Son S; Ju S; Kim W; Rho J; Lee H
    ACS Appl Mater Interfaces; 2021 May; 13(18):21119-21126. PubMed ID: 33926186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra-broadband all-dielectric metamaterial thermal emitter for passive radiative cooling.
    Kong A; Cai B; Shi P; Yuan XC
    Opt Express; 2019 Oct; 27(21):30102-30115. PubMed ID: 31684263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Passive radiative cooling below ambient air temperature under direct sunlight.
    Raman AP; Anoma MA; Zhu L; Rephaeli E; Fan S
    Nature; 2014 Nov; 515(7528):540-4. PubMed ID: 25428501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sub-ambient full-color passive radiative cooling under sunlight based on efficient quantum-dot photoluminescence.
    Wang X; Zhang Q; Wang S; Jin C; Zhu B; Su Y; Dong X; Liang J; Lu Z; Zhou L; Li W; Zhu S; Zhu J
    Sci Bull (Beijing); 2022 Sep; 67(18):1874-1881. PubMed ID: 36546301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectrally Selective Inorganic-Based Multilayer Emitter for Daytime Radiative Cooling.
    Chae D; Kim M; Jung PH; Son S; Seo J; Liu Y; Lee BJ; Lee H
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8073-8081. PubMed ID: 31990166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient Thin Polymer Coating as a Selective Thermal Emitter for Passive Daytime Radiative Cooling.
    Banik U; Agrawal A; Meddeb H; Sergeev O; Reininghaus N; Götz-Köhler M; Gehrke K; Stührenberg J; Vehse M; Sznajder M; Agert C
    ACS Appl Mater Interfaces; 2021 May; 13(20):24130-24137. PubMed ID: 33974398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible composite film with artificial opal photonic crystals for efficient all-day passive radiative cooling.
    Nan F; Zhu YF; Wei HX; Lin Y; Fan B; Zhou L
    Opt Express; 2022 Feb; 30(4):6003-6015. PubMed ID: 35209548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Multilayer Emitter Close to Ideal Solar Reflectance for Efficient Daytime Radiative Cooling.
    Zhu Y; Wang D; Fang C; He P; Ye YH
    Polymers (Basel); 2019 Jul; 11(7):. PubMed ID: 31323830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Advances in Electrospun Membranes for Radiative Cooling.
    Zhang D; Zhang H; Xu Z; Zhao Y
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling.
    Li D; Liu X; Li W; Lin Z; Zhu B; Li Z; Li J; Li B; Fan S; Xie J; Zhu J
    Nat Nanotechnol; 2021 Feb; 16(2):153-158. PubMed ID: 33199884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-performance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogel.
    Leroy A; Bhatia B; Kelsall CC; Castillejo-Cuberos A; Di Capua H M; Zhao L; Zhang L; Guzman AM; Wang EN
    Sci Adv; 2019 Oct; 5(10):eaat9480. PubMed ID: 31692957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanically Robust and Spectrally Selective Convection Shield for Daytime Subambient Radiative Cooling.
    Zhang J; Zhou Z; Tang H; Xing J; Quan J; Liu J; Yu J; Hu M
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14132-14140. PubMed ID: 33724770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Passive and Dynamic Phase-Change-Based Radiative Cooling in Outdoor Weather.
    Xu X; Gu J; Zhao H; Zhang X; Dou S; Li Y; Zhao J; Zhan Y; Li X
    ACS Appl Mater Interfaces; 2022 Mar; 14(12):14313-14320. PubMed ID: 35302341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colloidal Photonic Assemblies for Colorful Radiative Cooling.
    Kim HH; Im E; Lee S
    Langmuir; 2020 Jun; 36(23):6589-6596. PubMed ID: 32370514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Passive radiative cooling and other photonic approaches for the temperature control of photovoltaics: a comparative study for crystalline silicon-based architectures.
    Perrakis G; Tasolamprou AC; Kenanakis G; Economou EN; Tzortzakis S; Kafesaki M
    Opt Express; 2020 Jun; 28(13):18548-18565. PubMed ID: 32672154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iridescent Daytime Radiative Cooling with No Absorption Peaks in the Visible Range.
    Ding Z; Pattelli L; Xu H; Sun W; Li X; Pan L; Zhao J; Wang C; Zhang X; Song Y; Qiu J; Li Y; Yang R
    Small; 2022 Jun; 18(25):e2202400. PubMed ID: 35587771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anti-Environmental Aging Passive Daytime Radiative Cooling.
    Song J; Shen Q; Shao H; Deng X
    Adv Sci (Weinh); 2024 Mar; 11(10):e2305664. PubMed ID: 38148594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Efficiency Thermal-Shock Resistance Enabled by Radiative Cooling and Latent Heat Storage.
    Qin M; Jia K; Usman A; Han S; Xiong F; Han H; Jin Y; Aftab W; Geng X; Ma B; Ashraf Z; Gao S; Wang Y; Shen Z; Zou R
    Adv Mater; 2024 Jun; 36(25):e2314130. PubMed ID: 38428436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase Change Material Enhanced Radiative Cooler for Temperature-Adaptive Thermal Regulation.
    Yang M; Zhong H; Li T; Wu B; Wang Z; Sun D
    ACS Nano; 2023 Jan; ():. PubMed ID: 36633491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.