BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 27812531)

  • 1. Cell Electrical Impedance as a Novel Approach for Studies on Senescence Not Based on Biomarkers.
    Cha JJ; Park Y; Yun J; Kim HW; Park CJ; Kang G; Jung M; Pak B; Jin SW; Lee JH
    Biomed Res Int; 2016; 2016():8484217. PubMed ID: 27812531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis.
    Heileman K; Daoud J; Tabrizian M
    Biosens Bioelectron; 2013 Nov; 49():348-59. PubMed ID: 23796534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of cell senescence on the impedance measurement of adipose tissue-derived stem cells.
    Jun HS; Dao LT; Pyun JC; Cho S
    Enzyme Microb Technol; 2013 Oct; 53(5):302-6. PubMed ID: 24034428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of electrical characteristics of biological tissue with electrical impedance spectroscopy.
    Yao J; Wang L; Liu K; Wu H; Wang H; Huang J; Li J
    Electrophoresis; 2020 Sep; 41(16-17):1425-1432. PubMed ID: 31863489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interdigitated microelectrode-based microchip for electrical impedance spectroscopic study of oral cancer cells.
    Mamouni J; Yang L
    Biomed Microdevices; 2011 Dec; 13(6):1075-88. PubMed ID: 21833766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Electrical impedance spectroscopy for evaluation of the influence of simulated weightlessness on the electrical properties of rat blood].
    Gong Y; Chen L; Shen B; Ma Q
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Aug; 29(4):653-7, 662. PubMed ID: 23016410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel approach of processing electrical bioimpedance data using differential impedance analysis.
    Sanchez B; Bandarenka AS; Vandersteen G; Schoukens J; Bragos R
    Med Eng Phys; 2013 Sep; 35(9):1349-57. PubMed ID: 23601379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatially resolved electrical impedance methods for cell and particle characterization.
    Schwarz M; Jendrusch M; Constantinou I
    Electrophoresis; 2020 Jan; 41(1-2):65-80. PubMed ID: 31663624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Speed Single-Cell Dielectric Spectroscopy.
    Spencer D; Morgan H
    ACS Sens; 2020 Feb; 5(2):423-430. PubMed ID: 32013406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of ROS-independent ERK signaling rescues replicative cellular senescence in ex vivo expanded human c-kit-positive cardiac progenitor cells.
    Choi SH; Jung SY; Yoo SY; Yoo SM; Kim DY; Kang S; Baek SH; Kwon SM
    Int J Cardiol; 2013 Oct; 169(1):73-82. PubMed ID: 24094550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of ischemic changes in the vascular endothelial cell layer by using microelectrochemical impedance spectroscopy.
    Cha JJ; Kim J; Yun J; Park Y; Lee JH
    Med Eng Phys; 2018 Dec; 62():58-62. PubMed ID: 30318362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical biopsy of irradiated intestinal tissue with a simple electrical impedance spectroscopy system for radiation enteropathy in rats--a pilot study.
    Huang YJ; Huang EY; Lu YY; Chen CY; Cheng KS
    Physiol Meas; 2011 Sep; 32(9):1491-504. PubMed ID: 21813940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional carbon nanotube electrodes for extracellular recording of cardiac myocytes.
    Nick C; Joshi R; Schneider JJ; Thielemann C
    Biointerphases; 2012 Dec; 7(1-4):58. PubMed ID: 22956466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-cycle myocardium tissue electrical impedance monitoring using broadband impedance spectroscopy.
    Sanchez B; Vandersteen G; Rosell-Ferrer J; Cinca J; Bragos R
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2518-21. PubMed ID: 22254853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel estimation of the electrical bioimpedance using the local polynomial method. Application to in vivo real-time myocardium tissue impedance characterization during the cardiac cycle.
    Sanchez B; Schoukens J; Bragos R; Vandersteen G
    IEEE Trans Biomed Eng; 2011 Dec; 58(12):3376-85. PubMed ID: 21878408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new measuring and identification approach for time-varying bioimpedance using multisine electrical impedance spectroscopy.
    Sanchez B; Louarroudi E; Jorge E; Cinca J; Bragos R; Pintelon R
    Physiol Meas; 2013 Mar; 34(3):339-57. PubMed ID: 23442821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-implantation impedance spectroscopy of subretinal micro-electrode arrays, OCT imaging and numerical simulation: towards a more precise neuroprosthesis monitoring tool.
    Pham P; Roux S; Matonti F; Dupont F; Agache V; Chavane F
    J Neural Eng; 2013 Aug; 10(4):046002. PubMed ID: 23723150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From TER to trans- and paracellular resistance: lessons from impedance spectroscopy.
    Günzel D; Zakrzewski SS; Schmid T; Pangalos M; Wiedenhoeft J; Blasse C; Ozboda C; Krug SM
    Ann N Y Acad Sci; 2012 Jun; 1257():142-51. PubMed ID: 22671600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of long-term caloric restriction on cardiac senescence: caloric restriction ameliorates cardiac diastolic dysfunction associated with aging.
    Shinmura K; Tamaki K; Sano M; Murata M; Yamakawa H; Ishida H; Fukuda K
    J Mol Cell Cardiol; 2011 Jan; 50(1):117-27. PubMed ID: 20977912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature Correction to Enhance Blood Glucose Monitoring Accuracy Using Electrical Impedance Spectroscopy.
    Lee YS; Son M; Zhbanov A; Jung Y; Jung MH; Eom K; Nam SH; Park J; Yang S
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33142877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.