BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 27812574)

  • 1. Hot exciton cooling and multiple exciton generation in PbSe quantum dots.
    Kumar M; Vezzoli S; Wang Z; Chaudhary V; Ramanujan RV; Gurzadyan GG; Bruno A; Soci C
    Phys Chem Chem Phys; 2016 Nov; 18(45):31107-31114. PubMed ID: 27812574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing multiple exciton generation in quantum dots to impact ionization in bulk semiconductors: implications for enhancement of solar energy conversion.
    Beard MC; Midgett AG; Hanna MC; Luther JM; Hughes BK; Nozik AJ
    Nano Lett; 2010 Aug; 10(8):3019-27. PubMed ID: 20698615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple Exciton Generation in Semiconductor Quantum Dots.
    Beard MC
    J Phys Chem Lett; 2011 Jun; 2(11):1282-8. PubMed ID: 26295422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anomalous independence of multiple exciton generation on different group IV-VI quantum dot architectures.
    Trinh MT; Polak L; Schins JM; Houtepen AJ; Vaxenburg R; Maikov GI; Grinbom G; Midgett AG; Luther JM; Beard MC; Nozik AJ; Bonn M; Lifshitz E; Siebbeles LD
    Nano Lett; 2011 Apr; 11(4):1623-9. PubMed ID: 21348493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring exciton relaxation and multiexciton generation in PbSe nanocrystals using hyperspectral near-IR probing.
    Gdor I; Sachs H; Roitblat A; Strasfeld DB; Bawendi MG; Ruhman S
    ACS Nano; 2012 Apr; 6(4):3269-77. PubMed ID: 22390473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots.
    Ellingson RJ; Beard MC; Johnson JC; Yu P; Micic OI; Nozik AJ; Shabaev A; Efros AL
    Nano Lett; 2005 May; 5(5):865-71. PubMed ID: 15884885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Research on Spectrum Matching Method for PbSe Quantum Dots Luminescence Spectrum and Gas Absorption Spectrum].
    Xing XX; Qin HW; Shang WW
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Nov; 36(11):3588-91. PubMed ID: 30198694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exciton multiplication and relaxation dynamics in quantum dots: applications to ultrahigh-efficiency solar photon conversion.
    Nozik AJ
    Inorg Chem; 2005 Oct; 44(20):6893-9. PubMed ID: 16180844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Third generation photovoltaics based on multiple exciton generation in quantum confined semiconductors.
    Beard MC; Luther JM; Semonin OE; Nozik AJ
    Acc Chem Res; 2013 Jun; 46(6):1252-60. PubMed ID: 23113604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PbSe quantum dot solar cells with more than 6% efficiency fabricated in ambient atmosphere.
    Zhang J; Gao J; Church CP; Miller EM; Luther JM; Klimov VI; Beard MC
    Nano Lett; 2014 Oct; 14(10):6010-5. PubMed ID: 25203870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell.
    Semonin OE; Luther JM; Choi S; Chen HY; Gao J; Nozik AJ; Beard MC
    Science; 2011 Dec; 334(6062):1530-3. PubMed ID: 22174246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size and composition dependent multiple exciton generation efficiency in PbS, PbSe, and PbS(x)Se(1-x) alloyed quantum dots.
    Midgett AG; Luther JM; Stewart JT; Smith DK; Padilha LA; Klimov VI; Nozik AJ; Beard MC
    Nano Lett; 2013 Jul; 13(7):3078-85. PubMed ID: 23750998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafast biexciton spectroscopy in semiconductor quantum dots: evidence for early emergence of multiple-exciton generation.
    Choi Y; Sim S; Lim SC; Lee YH; Choi H
    Sci Rep; 2013 Nov; 3():3206. PubMed ID: 24220495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lead Telluride Quantum Dot Solar Cells Displaying External Quantum Efficiencies Exceeding 120%.
    Böhm ML; Jellicoe TC; Tabachnyk M; Davis NJ; Wisnivesky-Rocca-Rivarola F; Ducati C; Ehrler B; Bakulin AA; Greenham NC
    Nano Lett; 2015 Dec; 15(12):7987-93. PubMed ID: 26488847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct Visualization and Determination of the Multiple Exciton Generation Rate.
    Timmerman D; Matsubara E; Gomez L; Ashida M; Gregorkiewicz T; Fujiwara Y
    ACS Omega; 2020 Sep; 5(34):21506-21512. PubMed ID: 32905445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dye-Sensitized Multiple Exciton Generation in Lead Sulfide Quantum Dots.
    Huang Z; Beard MC
    J Am Chem Soc; 2022 Aug; 144(34):15855-15861. PubMed ID: 35981268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hole Cooling Is Much Faster than Electron Cooling in PbSe Quantum Dots.
    Spoor FC; Kunneman LT; Evers WH; Renaud N; Grozema FC; Houtepen AJ; Siebbeles LD
    ACS Nano; 2016 Jan; 10(1):695-703. PubMed ID: 26654878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exciton multiplication from first principles.
    Jaeger HM; Hyeon-Deuk K; Prezhdo OV
    Acc Chem Res; 2013 Jun; 46(6):1280-9. PubMed ID: 23459543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size-Dependent Exciton Formation Dynamics in Colloidal Silicon Quantum Dots.
    Bergren MR; Palomaki PK; Neale NR; Furtak TE; Beard MC
    ACS Nano; 2016 Feb; 10(2):2316-23. PubMed ID: 26811876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of Laser-Induced Multi-Exciton Generation and Dynamics by Multi-Photon Absorption in CdSe Quantum Dots.
    Zhang P; Wang Y; Su X; Zhang Q; Sun M
    Nanomaterials (Basel); 2024 Mar; 14(7):. PubMed ID: 38607093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.