These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 2781267)

  • 21. Trace elements in soil-vegetables interface: Translocation, bioaccumulation, toxicity and amelioration - A review.
    Gupta N; Yadav KK; Kumar V; Kumar S; Chadd RP; Kumar A
    Sci Total Environ; 2019 Feb; 651(Pt 2):2927-2942. PubMed ID: 30463144
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impact of atmospheric deposition of As, Cd and Pb on their concentration in carrot and celeriac.
    De Temmerman L; Ruttens A; Waegeneers N
    Environ Pollut; 2012 Jul; 166():187-95. PubMed ID: 22513000
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of cadmium transfer from soil to leafy vegetables: Influencing factors, transfer models, and indication of soil threshold contents.
    Xiao W; Ye X; Zhang Q; Chen D; Hu J; Gao N
    Ecotoxicol Environ Saf; 2018 Nov; 164():355-362. PubMed ID: 30134214
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessment of lead, cadmium, and zinc contamination of roadside soils, surface films, and vegetables in Kampala City, Uganda.
    Nabulo G; Oryem-Origa H; Diamond M
    Environ Res; 2006 May; 101(1):42-52. PubMed ID: 16527265
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cadmium Accumulation Risk in Vegetables and Rice in Southern China: Insights from Solid-Solution Partitioning and Plant Uptake Factor.
    Yang Y; Wang M; Chen W; Li Y; Peng C
    J Agric Food Chem; 2017 Jul; 65(27):5463-5469. PubMed ID: 28635264
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Uptake of trace elements and PAHs by fruit and vegetables from contaminated soils.
    Samsøe-Petersen L; Larsen EH; Larsen PB; Bruun P
    Environ Sci Technol; 2002 Jul; 36(14):3057-63. PubMed ID: 12141482
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Uptake and translocation of 109Cd and stable Cd within tobacco plants (Nicotiana sylvestris).
    Rosén K; Eriksson J; Vinichuk M
    J Environ Radioact; 2012 Nov; 113():16-20. PubMed ID: 22609827
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comparison of phytoremediation capability of selected plant species for given trace elements.
    Fischerová Z; Tlustos P; Jirina Száková ; Kornelie Sichorová
    Environ Pollut; 2006 Nov; 144(1):93-100. PubMed ID: 16516363
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction of cadmium concentration in selected home-produced vegetables.
    Bešter PK; Lobnik F; Eržen I; Kastelec D; Zupan M
    Ecotoxicol Environ Saf; 2013 Oct; 96():182-90. PubMed ID: 23886800
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cadmium availability and uptake by radish (Raphanus sativus) grown in soils applied with wheat straw or composted pig manure.
    Shan H; Su S; Liu R; Li S
    Environ Sci Pollut Res Int; 2016 Aug; 23(15):15208-17. PubMed ID: 27098882
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heterogeneity of cadmium concentration in soil as a source of uncertainty in plant uptake and its implications for human health risk assessment.
    Millis PR; Ramsey MH; John EA
    Sci Total Environ; 2004 Jun; 326(1-3):49-53. PubMed ID: 15142764
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differences of cadmium absorption and accumulation in selected vegetable crops.
    Ni WZ; Yang XE; Long XX
    J Environ Sci (China); 2002 Jul; 14(3):399-405. PubMed ID: 12211993
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Root uptake and shoot accumulation of cadmium by lettuce at various Cd:Zn ratios in nutrient solution.
    Zare AA; Khoshgoftarmanesh AH; Malakouti MJ; Bahrami HA; Chaney RL
    Ecotoxicol Environ Saf; 2018 Feb; 148():441-446. PubMed ID: 29102904
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Uptake of cadmium by hydroponically grown, mature Eucalyptus camaldulensis saplings and the effect of organic ligands.
    Fine P; Rathod PH; Beriozkin A; Mingelgrin U
    Int J Phytoremediation; 2013; 15(6):585-601. PubMed ID: 23819299
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cadmium uptake by plants.
    Smolders E
    Int J Occup Med Environ Health; 2001; 14(2):177-83. PubMed ID: 11548068
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Environmental risks of trace elements associated with long-term phosphate fertilizers applications: a review.
    Jiao W; Chen W; Chang AC; Page AL
    Environ Pollut; 2012 Sep; 168():44-53. PubMed ID: 22591788
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cadmium phytoavailability under greenhouse vegetable production system measured by diffusive gradients in thin films (DGT) and its implications for the soil threshold.
    Tian K; Xing Z; Liu G; Wang H; Jia M; Hu W; Huang B
    Environ Pollut; 2018 Oct; 241():412-421. PubMed ID: 29860157
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Transfer characteristics of mercury, lead, cadmium, zinc and cuprum from soil to vegetable around zinc smelting plant].
    Zheng N; Wang QC; Zheng DM
    Huan Jing Ke Xue; 2007 Jun; 28(6):1349-54. PubMed ID: 17674748
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phytoremediation of Cadmium by Native Plants Grown on Mining Soil.
    Palutoglu M; Akgul B; Suyarko V; Yakovenko M; Kryuchenko N; Sasmaz A
    Bull Environ Contam Toxicol; 2018 Feb; 100(2):293-297. PubMed ID: 29177694
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of tolerance and biosorption of three trace metals (Cd, Cu, Pb) by the soil fungus Absidia cylindrospora.
    Albert Q; Leleyter L; Lemoine M; Heutte N; Rioult JP; Sage L; Baraud F; Garon D
    Chemosphere; 2018 Apr; 196():386-392. PubMed ID: 29316464
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.