BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

604 related articles for article (PubMed ID: 27812875)

  • 1. Detection of Reactive Oxygen Species in Cells Undergoing Oncogene-Induced Senescence.
    Ameziane-El-Hassani R; Dupuy C
    Methods Mol Biol; 2017; 1534():139-145. PubMed ID: 27812875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methods for detection of mitochondrial reactive oxygen species in senescent cells.
    Salma F; Yassire O; Youssef B; Corinne D; Ameziane El Hassani R
    Methods Cell Biol; 2024; 181():33-41. PubMed ID: 38302242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactive oxygen species promotes cellular senescence in normal human epidermal keratinocytes through epigenetic regulation of p16(INK4a.).
    Sasaki M; Kajiya H; Ozeki S; Okabe K; Ikebe T
    Biochem Biophys Res Commun; 2014 Sep; 452(3):622-8. PubMed ID: 25181340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free radicals, metals and antioxidants in oxidative stress-induced cancer.
    Valko M; Rhodes CJ; Moncol J; Izakovic M; Mazur M
    Chem Biol Interact; 2006 Mar; 160(1):1-40. PubMed ID: 16430879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen peroxide is responsible for UVA-induced DNA damage measured by alkaline comet assay in HaCaT keratinocytes.
    Petersen AB; Gniadecki R; Vicanova J; Thorn T; Wulf HC
    J Photochem Photobiol B; 2000 Dec; 59(1-3):123-31. PubMed ID: 11332879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron paramagnetic resonance study of the generation of reactive oxygen species catalysed by transition metals and quinoid redox cycling by inhalable ambient particulate matter.
    Valavanidis A; Fiotakis K; Bakeas E; Vlahogianni T
    Redox Rep; 2005; 10(1):37-51. PubMed ID: 15829110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox homeostasis of breast cancer lineages contributes to differential cell death response to exogenous hydrogen peroxide.
    Hecht F; Cazarin JM; Lima CE; Faria CC; Leitão AA; Ferreira AC; Carvalho DP; Fortunato RS
    Life Sci; 2016 Aug; 158():7-13. PubMed ID: 27328417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of reactive oxygen species in the enzymatic reduction of PbCrO4 and related DNA damage.
    Leonard SS; Vallyathan V; Castranova V; Shi X
    Mol Cell Biochem; 2002; 234-235(1-2):309-15. PubMed ID: 12162449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological origin of free radicals, and mechanisms of antioxidant protection.
    Gutteridge JM
    Chem Biol Interact; 1994 Jun; 91(2-3):133-40. PubMed ID: 8194129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ROS and RNS in plant physiology: an overview.
    Del Río LA
    J Exp Bot; 2015 May; 66(10):2827-37. PubMed ID: 25873662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vanadate-induced cell growth regulation and the role of reactive oxygen species.
    Zhang Z; Huang C; Li J; Leonard SS; Lanciotti R; Butterworth L; Shi X
    Arch Biochem Biophys; 2001 Aug; 392(2):311-20. PubMed ID: 11488607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease.
    Valko M; Jomova K; Rhodes CJ; Kuča K; Musílek K
    Arch Toxicol; 2016 Jan; 90(1):1-37. PubMed ID: 26343967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disulfiram anti-cancer efficacy without copper overload is enhanced by extracellular H2O2 generation: antagonism by tetrathiomolybdate.
    Calderon-Aparicio A; Strasberg-Rieber M; Rieber M
    Oncotarget; 2015 Oct; 6(30):29771-81. PubMed ID: 26356671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The novel antioxidant TA293 reveals the role of cytoplasmic hydroxyl radicals in oxidative stress-induced senescence and inflammation.
    Sakai T; Imai J; Ito T; Takagaki H; Ui M; Hatta S
    Biochem Biophys Res Commun; 2017 Jan; 482(4):1183-1189. PubMed ID: 27923656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyperoside prevents oxidative damage induced by hydrogen peroxide in lung fibroblast cells via an antioxidant effect.
    Piao MJ; Kang KA; Zhang R; Ko DO; Wang ZH; You HJ; Kim HS; Kim JS; Kang SS; Hyun JW
    Biochim Biophys Acta; 2008 Dec; 1780(12):1448-57. PubMed ID: 18761393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidation pathways underlying the pro-oxidant effects of apigenin.
    Andueza A; García-Garzón A; Ruiz de Galarreta M; Ansorena E; Iraburu MJ; López-Zabalza MJ; Martínez-Irujo JJ
    Free Radic Biol Med; 2015 Oct; 87():169-80. PubMed ID: 26119779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ATM-ROS-iNOS axis regulates nitric oxide mediated cellular senescence.
    Bagheri M; Nair RR; Singh KK; Saini DK
    Biochim Biophys Acta Mol Cell Res; 2017 Jan; 1864(1):177-190. PubMed ID: 27845209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactive oxygen species generated in different compartments induce cell death, survival, or senescence.
    Panieri E; Gogvadze V; Norberg E; Venkatesh R; Orrenius S; Zhivotovsky B
    Free Radic Biol Med; 2013 Apr; 57():176-87. PubMed ID: 23295411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-Time In Vivo Monitoring of Reactive Oxygen Species in Guard Cells.
    Park KY; Roubelakis-Angelakis KA
    Methods Mol Biol; 2018; 1694():417-425. PubMed ID: 29080184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CUL4B impedes stress-induced cellular senescence by dampening a p53-reactive oxygen species positive feedback loop.
    Wei Z; Guo H; Liu Z; Zhang X; Liu Q; Qian Y; Gong Y; Shao C
    Free Radic Biol Med; 2015 Feb; 79():1-13. PubMed ID: 25464270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.