BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 27812877)

  • 21. Detection of the Ubiquitinome in Cells Undergoing Oncogene-Induced Senescence.
    Zhu H; Le L; Tang HY; Speicher DW; Zhang R
    Methods Mol Biol; 2017; 1534():127-137. PubMed ID: 27812874
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of an NMR microprobe procedure for high-throughput environmental metabolomics of Daphnia magna.
    Nagato EG; Lankadurai BP; Soong R; Simpson AJ; Simpson MJ
    Magn Reson Chem; 2015 Sep; 53(9):745-53. PubMed ID: 25891518
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Positional Enrichment by Proton Analysis (PEPA): A One-Dimensional
    Vinaixa M; Rodríguez MA; Aivio S; Capellades J; Gómez J; Canyellas N; Stracker TH; Yanes O
    Angew Chem Int Ed Engl; 2017 Mar; 56(13):3531-3535. PubMed ID: 28220994
    [TBL] [Abstract][Full Text] [Related]  

  • 24. NMR-Based Metabolomics in Cardiac Research.
    Griffin JL; Castro C
    Methods Mol Biol; 2019; 2037():189-194. PubMed ID: 31463846
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of Plasma, Serum, and Whole Blood Metabolites Using
    Nagana Gowda GA; Raftery D
    Methods Mol Biol; 2019; 2037():17-34. PubMed ID: 31463837
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A robust intracellular metabolite extraction protocol for human neutrophil metabolic profiling.
    Chokesuwattanaskul S; Phelan MM; Edwards SW; Wright HL
    PLoS One; 2018; 13(12):e0209270. PubMed ID: 30571714
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oncogene-induced senescence results in marked metabolic and bioenergetic alterations.
    Quijano C; Cao L; Fergusson MM; Romero H; Liu J; Gutkind S; Rovira II; Mohney RP; Karoly ED; Finkel T
    Cell Cycle; 2012 Apr; 11(7):1383-92. PubMed ID: 22421146
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multi-platform NMR Study of Pluripotent Stem Cells Unveils Complementary Metabolic Signatures towards Differentiation.
    Elena-Herrmann B; Montellier E; Fages A; Bruck-Haimson R; Moussaieff A
    Sci Rep; 2020 Jan; 10(1):1622. PubMed ID: 32005897
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Changes in the metabolic profile of rat liver after α-tocopherol deficiency as revealed by metabolomics analysis.
    Moazzami AA; Andersson R; Kamal-Eldin A
    NMR Biomed; 2011 Jun; 24(5):499-505. PubMed ID: 21674651
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Signature Mapping (SigMa): An efficient approach for processing complex human urine
    Khakimov B; Mobaraki N; Trimigno A; Aru V; Engelsen SB
    Anal Chim Acta; 2020 Apr; 1108():142-151. PubMed ID: 32222235
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of nuclear magnetic resonance spectroscopy for the detection of metabolic disorders in patients with moderate kidney insufficiency.
    Mika A; Wojtowicz W; Ząbek A; Młynarz P; Chmielewski M; Sledzinski T; Stepnowski P
    J Pharm Biomed Anal; 2018 Feb; 149():1-8. PubMed ID: 29100025
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 1H NMR-based urinary metabolic profiling reveals changes in nicotinamide pathway intermediates due to postnatal stress model in rat.
    Tomassini A; Vitalone A; Marini F; Praticò G; Sciubba F; Bevilacqua M; Delfini M; Di Sotto A; Di Giacomo S; Mariani P; Mammola CL; Gaudio E; Miccheli A; Mazzanti G
    J Proteome Res; 2014 Dec; 13(12):5848-59. PubMed ID: 25299838
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cross-platform comparison of Caenorhabditis elegans tissue extraction strategies for comprehensive metabolome coverage.
    Geier FM; Want EJ; Leroi AM; Bundy JG
    Anal Chem; 2011 May; 83(10):3730-6. PubMed ID: 21480661
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biochemical effects of venlafaxine on astrocytes as revealed by
    Sun L; Fang L; Lian B; Xia JJ; Zhou CJ; Wang L; Mao Q; Wang XF; Gong X; Liang ZH; Bai SJ; Liao L; Wu Y; Xie P
    Mol Biosyst; 2017 Jan; 13(2):338-349. PubMed ID: 28045162
    [TBL] [Abstract][Full Text] [Related]  

  • 35. NMR-based metabonomic analysis of HUVEC cells during replicative senescence.
    Yi S; Lin K; Jiang T; Shao W; Huang C; Jiang B; Li Q; Lin D
    Aging (Albany NY); 2020 Feb; 12(4):3626-3646. PubMed ID: 32074082
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Strategy for choosing extraction procedures for NMR-based metabolomic analysis of mammalian cells.
    Martineau E; Tea I; Loaëc G; Giraudeau P; Akoka S
    Anal Bioanal Chem; 2011 Oct; 401(7):2133-42. PubMed ID: 21837464
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Data Normalization of (1)H NMR Metabolite Fingerprinting Data Sets in the Presence of Unbalanced Metabolite Regulation.
    Hochrein J; Zacharias HU; Taruttis F; Samol C; Engelmann JC; Spang R; Oefner PJ; Gronwald W
    J Proteome Res; 2015 Aug; 14(8):3217-28. PubMed ID: 26147738
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolomics technology and their application to the study of the viral infection.
    Noto A; Dessi A; Puddu M; Mussap M; Fanos V
    J Matern Fetal Neonatal Med; 2014 Oct; 27 Suppl 2():53-7. PubMed ID: 25284178
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Library-assisted nonlinear blind separation and annotation of pure components from a single
    Kopriva I; Jerić I; Hadžija MP; Hadžija M; Lovrenčić MV; Brkljačić L
    Anal Chim Acta; 2019 Nov; 1080():55-65. PubMed ID: 31409475
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessment of compatibility between extraction methods for NMR- and LC/MS-based metabolomics.
    Beltran A; Suarez M; Rodríguez MA; Vinaixa M; Samino S; Arola L; Correig X; Yanes O
    Anal Chem; 2012 Jul; 84(14):5838-44. PubMed ID: 22697410
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.