These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

430 related articles for article (PubMed ID: 27812964)

  • 1. Nitric oxide signaling and its crosstalk with other plant growth regulators in plant responses to abiotic stress.
    Asgher M; Per TS; Masood A; Fatma M; Freschi L; Corpas FJ; Khan NA
    Environ Sci Pollut Res Int; 2017 Jan; 24(3):2273-2285. PubMed ID: 27812964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitric oxide-mediated integrative alterations in plant metabolism to confer abiotic stress tolerance, NO crosstalk with phytohormones and NO-mediated post translational modifications in modulating diverse plant stress.
    Sami F; Faizan M; Faraz A; Siddiqui H; Yusuf M; Hayat S
    Nitric Oxide; 2018 Feb; 73():22-38. PubMed ID: 29275195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of nitric oxide in heavy metal stress in plants: Cross-talk with phytohormones and protein S-nitrosylation.
    Wei L; Zhang M; Wei S; Zhang J; Wang C; Liao W
    Environ Pollut; 2020 Apr; 259():113943. PubMed ID: 32023797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen peroxide as a signalling molecule in plants and its crosstalk with other plant growth regulators under heavy metal stress.
    Nazir F; Fariduddin Q; Khan TA
    Chemosphere; 2020 Aug; 252():126486. PubMed ID: 32234629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitric oxide: An emerging warrior of plant physiology under abiotic stress.
    Saini S; Sharma P; Singh P; Kumar V; Yadav P; Sharma A
    Nitric Oxide; 2023 Nov; 140-141():58-76. PubMed ID: 37848156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitric oxide, crosstalk with stress regulators and plant abiotic stress tolerance.
    Zhou X; Joshi S; Khare T; Patil S; Shang J; Kumar V
    Plant Cell Rep; 2021 Aug; 40(8):1395-1414. PubMed ID: 33974111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plant hormone-mediated regulation of stress responses.
    Verma V; Ravindran P; Kumar PP
    BMC Plant Biol; 2016 Apr; 16():86. PubMed ID: 27079791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of sulfur with phytohormones and signaling molecules in conferring abiotic stress tolerance to plants.
    Hasanuzzaman M; Bhuyan MHMB; Mahmud JA; Nahar K; Mohsin SM; Parvin K; Fujita M
    Plant Signal Behav; 2018; 13(5):e1477905. PubMed ID: 29939817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitric oxide (NO) and salicylic acid (SA): A framework for their relationship in plant development under abiotic stress.
    Prakash V; Singh VP; Tripathi DK; Sharma S; Corpas FJ
    Plant Biol (Stuttg); 2021 May; 23 Suppl 1():39-49. PubMed ID: 33590621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Present knowledge and controversies, deficiencies, and misconceptions on nitric oxide synthesis, sensing, and signaling in plants.
    León J; Costa-Broseta Á
    Plant Cell Environ; 2020 Jan; 43(1):. PubMed ID: 31323702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Progress in Protein S-Nitrosylation in Phytohormone Signaling.
    Zhang J; Huang D; Wang C; Wang B; Fang H; Huo J; Liao W
    Plant Cell Physiol; 2019 Mar; 60(3):494-502. PubMed ID: 30668813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitric oxide (NO) and phytohormones crosstalk during early plant development.
    Sanz L; Albertos P; Mateos I; Sánchez-Vicente I; Lechón T; Fernández-Marcos M; Lorenzo O
    J Exp Bot; 2015 May; 66(10):2857-68. PubMed ID: 25954048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The intricacy of silicon, plant growth regulators and other signaling molecules for abiotic stress tolerance: An entrancing crosstalk between stress alleviators.
    Khan MIR; Ashfaque F; Chhillar H; Irfan M; Khan NA
    Plant Physiol Biochem; 2021 May; 162():36-47. PubMed ID: 33667965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current Understanding of the Interplay between Phytohormones and Photosynthesis under Environmental Stress.
    Gururani MA; Mohanta TK; Bae H
    Int J Mol Sci; 2015 Aug; 16(8):19055-85. PubMed ID: 26287167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of nitric oxide crosstalk with reactive oxygen species scavenging enzymes during abiotic stress tolerance in plants.
    Arora D; Jain P; Singh N; Kaur H; Bhatla SC
    Free Radic Res; 2016; 50(3):291-303. PubMed ID: 26554526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric oxide in plants: an insight on redox activity and responses toward abiotic stress signaling.
    Khator K; Parihar S; Jasik J; Shekhawat GS
    Plant Signal Behav; 2024 Dec; 19(1):2298053. PubMed ID: 38190763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein S-nitrosylation under abiotic stress: Role and mechanism.
    Wang T; Hou X; Wei L; Deng Y; Zhao Z; Liang C; Liao W
    Plant Physiol Biochem; 2024 Feb; 207():108329. PubMed ID: 38184883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein S-Nitrosylation in plants: Current progresses and challenges.
    Feng J; Chen L; Zuo J
    J Integr Plant Biol; 2019 Dec; 61(12):1206-1223. PubMed ID: 30663237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An update on nitric oxide and its benign role in plant responses under metal stress.
    Sahay S; Gupta M
    Nitric Oxide; 2017 Jul; 67():39-52. PubMed ID: 28456602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crosstalk between secondary messengers, hormones and MAPK modules during abiotic stress signalling in plants.
    Smékalová V; Doskočilová A; Komis G; Samaj J
    Biotechnol Adv; 2014; 32(1):2-11. PubMed ID: 23911976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.