These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 27813003)

  • 1. DNA Functionalization of Nanoparticles.
    Lu F; Gang O
    Methods Mol Biol; 2017; 1500():99-107. PubMed ID: 27813003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and characterization of DNA block copolymer assemblies loaded with nanoparticles.
    Chen XJ; Hickey RJ; Park SJ
    Methods Mol Biol; 2013; 1025():207-24. PubMed ID: 23918340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrative self-assembly of functional hybrid nanoconstructs by inorganic wrapping of single biomolecules, biomolecule arrays and organic supramolecular assemblies.
    Patil AJ; Li M; Mann S
    Nanoscale; 2013 Aug; 5(16):7161-74. PubMed ID: 23824335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles.
    Sperling RA; Parak WJ
    Philos Trans A Math Phys Eng Sci; 2010 Mar; 368(1915):1333-83. PubMed ID: 20156828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interfacially formed organized planar inorganic, polymeric and composite nanostructures.
    Khomutov GB
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):79-116. PubMed ID: 15571664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface Functionalization of Metal Nanoparticles by Conjugated Metal-Ligand Interfacial Bonds: Impacts on Intraparticle Charge Transfer.
    Hu P; Chen L; Kang X; Chen S
    Acc Chem Res; 2016; 49(10):2251-2260. PubMed ID: 27690382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in chemical functionalization of nanoparticles with biomolecules for analytical applications.
    Oh JH; Park DH; Joo JH; Lee JS
    Anal Bioanal Chem; 2015 Nov; 407(29):8627-45. PubMed ID: 26329278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semisynthetic DNA-protein conjugates for biosensing and nanofabrication.
    Niemeyer CM
    Angew Chem Int Ed Engl; 2010 Feb; 49(7):1200-16. PubMed ID: 20091721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directed Assembly of Nucleic Acid-Based Polymeric Nanoparticles from Molecular Tetravalent Cores.
    Hong BJ; Eryazici I; Bleher R; Thaner RV; Mirkin CA; Nguyen ST
    J Am Chem Soc; 2015 Jul; 137(25):8184-91. PubMed ID: 25980315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of core-shell gold coated magnetic nanoparticles and their interaction with thiolated DNA.
    Robinson I; Tung le D; Maenosono S; Wälti C; Thanh NT
    Nanoscale; 2010 Dec; 2(12):2624-30. PubMed ID: 20967339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physical and biochemical insights on DNA structures in artificial and living systems.
    Chen N; Li J; Song H; Chao J; Huang Q; Fan C
    Acc Chem Res; 2014 Jun; 47(6):1720-30. PubMed ID: 24588263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of core-shell structured nanoparticle layer substrate for excitation of localized surface plasmon resonance and its optical response for DNA in aqueous conditions.
    Endo T; Ikeda D; Kawakami Y; Yanagida Y; Hatsuzawa T
    Anal Chim Acta; 2010 Feb; 661(2):200-5. PubMed ID: 20113736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In silico modeling and experimental evidence of coagulant protein interaction with precursors for nanoparticle functionalization.
    Okoli C; Sengottaiyan S; Arul Murugan N; Pavankumar AR; Agren H; Kuttuva Rajarao G
    J Biomol Struct Dyn; 2013 Oct; 31(10):1182-90. PubMed ID: 23163338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploiting core-shell synergy for nanosynthesis and mechanistic investigation.
    Wang H; Chen L; Feng Y; Chen H
    Acc Chem Res; 2013 Jul; 46(7):1636-46. PubMed ID: 23614692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences.
    Jun YW; Seo JW; Cheon J
    Acc Chem Res; 2008 Feb; 41(2):179-89. PubMed ID: 18281944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Core-shell-corona polymeric micelles as a versatile template for synthesis of inorganic hollow nanospheres.
    Sasidharan M; Nakashima K
    Acc Chem Res; 2014 Jan; 47(1):157-67. PubMed ID: 23962222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Core-shell hybrid nanoparticles with functionalized quantum dots and ionic dyes: growth, monolayer formation, and electrical bistability.
    Das BC; Pal AJ
    ACS Nano; 2008 Sep; 2(9):1930-8. PubMed ID: 19206434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomimetic synthesis of raspberry-like hybrid polymer-silica core-shell nanoparticles by templating colloidal particles with hairy polyamine shell.
    Pi M; Yang T; Yuan J; Fujii S; Kakigi Y; Nakamura Y; Cheng S
    Colloids Surf B Biointerfaces; 2010 Jul; 78(2):193-9. PubMed ID: 20347275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functionalization of inorganic nanoparticles for bioimaging applications.
    Erathodiyil N; Ying JY
    Acc Chem Res; 2011 Oct; 44(10):925-35. PubMed ID: 21648430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design strategies of hybrid metallic nanoparticles for theragnostic applications.
    Gautier J; Allard-Vannier E; Hervé-Aubert K; Soucé M; Chourpa I
    Nanotechnology; 2013 Nov; 24(43):432002. PubMed ID: 24107712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.