These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 27813007)

  • 41. Single-molecule imaging of dynamic motions of biomolecules in DNA origami nanostructures using high-speed atomic force microscopy.
    Endo M; Sugiyama H
    Acc Chem Res; 2014 Jun; 47(6):1645-53. PubMed ID: 24601497
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Size-controllable DNA nanoribbons assembled from three types of reusable brick single-strand DNA tiles.
    Shi X; Chen C; Li X; Song T; Chen Z; Zhang Z; Wang Y
    Soft Matter; 2015 Nov; 11(43):8484-92. PubMed ID: 26367111
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Transfer of Two-Dimensional Oligonucleotide Patterns onto Stereocontrolled Plasmonic Nanostructures through DNA-Origami-Based Nanoimprinting Lithography.
    Zhang Y; Chao J; Liu H; Wang F; Su S; Liu B; Zhang L; Shi J; Wang L; Huang W; Wang L; Fan C
    Angew Chem Int Ed Engl; 2016 Jul; 55(28):8036-40. PubMed ID: 27194406
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Assembly of a DNA Origami Chinese Knot by Only 15% of the Staple Strands.
    He K; Li Z; Liu L; Zheng M; Mao C
    Chembiochem; 2020 Aug; 21(15):2132-2136. PubMed ID: 32196869
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Self-assembled Nucleic Acid Nanostructures for Biomedical Applications.
    Chang X; Yang Q; Lee J; Zhang F
    Curr Top Med Chem; 2022; 22(8):652-667. PubMed ID: 35319373
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Recent progress in DNA origami technology.
    Endo M; Sugiyama H
    Curr Protoc Nucleic Acid Chem; 2011 Jun; Chapter 12():Unit12.8. PubMed ID: 21638269
    [TBL] [Abstract][Full Text] [Related]  

  • 47. AFM Imaging of Hybridization Chain Reaction Mediated Signal Transmission between Two DNA Origami Structures.
    Helmig S; Gothelf KV
    Angew Chem Int Ed Engl; 2017 Oct; 56(44):13633-13636. PubMed ID: 28868629
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Wireframe and tensegrity DNA nanostructures.
    Simmel SS; Nickels PC; Liedl T
    Acc Chem Res; 2014 Jun; 47(6):1691-9. PubMed ID: 24720250
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Folding of single-stranded circular DNA into rigid rectangular DNA accelerates its cellular uptake.
    Ohtsuki S; Shiba Y; Maezawa T; Hidaka K; Sugiyama H; Endo M; Takahashi Y; Takakura Y; Nishikawa M
    Nanoscale; 2019 Dec; 11(48):23416-23422. PubMed ID: 31799532
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Measuring the Conformation and Persistence Length of Single-Stranded DNA Using a DNA Origami Structure.
    Roth E; Glick Azaria A; Girshevitz O; Bitler A; Garini Y
    Nano Lett; 2018 Nov; 18(11):6703-6709. PubMed ID: 30352164
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Self-Assembly of Large DNA Origami with Custom-Designed Scaffolds.
    Chen X; Wang Q; Peng J; Long Q; Yu H; Li Z
    ACS Appl Mater Interfaces; 2018 Jul; 10(29):24344-24348. PubMed ID: 29989388
    [TBL] [Abstract][Full Text] [Related]  

  • 52. One-Pot Synthesis of Defined-Length ssDNA for Multiscaffold DNA Origami.
    Noteborn WEM; Abendstein L; Sharp TH
    Bioconjug Chem; 2021 Jan; 32(1):94-98. PubMed ID: 33307668
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Self-assembly of DNA origami and single-stranded tile structures at room temperature.
    Zhang Z; Song J; Besenbacher F; Dong M; Gothelf KV
    Angew Chem Int Ed Engl; 2013 Aug; 52(35):9219-23. PubMed ID: 23843201
    [No Abstract]   [Full Text] [Related]  

  • 54. Programming Self-Assembly of DNA Origami Honeycomb Two-Dimensional Lattices and Plasmonic Metamaterials.
    Wang P; Gaitanaros S; Lee S; Bathe M; Shih WM; Ke Y
    J Am Chem Soc; 2016 Jun; 138(24):7733-40. PubMed ID: 27224641
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Meta-DNA structures.
    Yao G; Zhang F; Wang F; Peng T; Liu H; Poppleton E; Šulc P; Jiang S; Liu L; Gong C; Jing X; Liu X; Wang L; Liu Y; Fan C; Yan H
    Nat Chem; 2020 Nov; 12(11):1067-1075. PubMed ID: 32895523
    [TBL] [Abstract][Full Text] [Related]  

  • 56. DNA Block Macromolecules Based on Rolling Circle Amplification Act as Scaffolds to Build Large-Scale Origami Nanostructures.
    Zhang Z; Zhang H; Wang F; Zhang G; Zhou T; Wang X; Liu S; Liu T
    Macromol Rapid Commun; 2018 Aug; 39(15):e1800263. PubMed ID: 29952041
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Single-stranded DNA and RNA origami.
    Han D; Qi X; Myhrvold C; Wang B; Dai M; Jiang S; Bates M; Liu Y; An B; Zhang F; Yan H; Yin P
    Science; 2017 Dec; 358(6369):. PubMed ID: 29242318
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An alternative approach to nucleic acid memory.
    Dickinson GD; Mortuza GM; Clay W; Piantanida L; Green CM; Watson C; Hayden EJ; Andersen T; Kuang W; Graugnard E; Zadegan R; Hughes WL
    Nat Commun; 2021 Apr; 12(1):2371. PubMed ID: 33888693
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Precise structure control of three-state nanomechanical DNA origami devices.
    Kuzuya A; Watanabe R; Hashizume M; Kaino M; Minamida S; Kameda K; Ohya Y
    Methods; 2014 May; 67(2):250-5. PubMed ID: 24270064
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Single molecule atomic force microscopy studies of photosensitized singlet oxygen behavior on a DNA origami template.
    Helmig S; Rotaru A; Arian D; Kovbasyuk L; Arnbjerg J; Ogilby PR; Kjems J; Mokhir A; Besenbacher F; Gothelf KV
    ACS Nano; 2010 Dec; 4(12):7475-80. PubMed ID: 21090671
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.