These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 27813156)

  • 1. Low-, high-coverage, and two-stage DNA sequencing in the design of the genetic association study.
    Xu C; Wu K; Zhang JG; Shen H; Deng HW
    Genet Epidemiol; 2017 Apr; 41(3):187-197. PubMed ID: 27813156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis and optimal design for association studies using next-generation sequencing with case-control pools.
    Liang WE; Thomas DC; Conti DV
    Genet Epidemiol; 2012 Dec; 36(8):870-81. PubMed ID: 22972696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Medium-coverage DNA sequencing in the design of the genetic association study.
    Xu C; Zhang R; Shen H; Deng HW
    Eur J Hum Genet; 2020 Oct; 28(10):1459-1466. PubMed ID: 32457519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing single nucleotide variant detection and genotype calling on whole-genome sequenced individuals.
    Cheng AY; Teo YY; Ong RT
    Bioinformatics; 2014 Jun; 30(12):1707-13. PubMed ID: 24558117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient study design for next generation sequencing.
    Sampson J; Jacobs K; Yeager M; Chanock S; Chatterjee N
    Genet Epidemiol; 2011 May; 35(4):269-77. PubMed ID: 21370254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of association studies with pooled or un-pooled next-generation sequencing data.
    Kim SY; Li Y; Guo Y; Li R; Holmkvist J; Hansen T; Pedersen O; Wang J; Nielsen R
    Genet Epidemiol; 2010 Jul; 34(5):479-91. PubMed ID: 20552648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal sequencing depth design for whole genome re-sequencing in pigs.
    Jiang Y; Jiang Y; Wang S; Zhang Q; Ding X
    BMC Bioinformatics; 2019 Nov; 20(1):556. PubMed ID: 31703550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of genotyping errors on statistical power of association tests in genomic analyses: A case study.
    Hou L; Sun N; Mane S; Sayward F; Rajeevan N; Cheung KH; Cho K; Pyarajan S; Aslan M; Miller P; Harvey PD; Gaziano JM; Concato J; Zhao H
    Genet Epidemiol; 2017 Feb; 41(2):152-162. PubMed ID: 28019059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-coverage sequencing: implications for design of complex trait association studies.
    Li Y; Sidore C; Kang HM; Boehnke M; Abecasis GR
    Genome Res; 2011 Jun; 21(6):940-51. PubMed ID: 21460063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rare variant association testing under low-coverage sequencing.
    Navon O; Sul JH; Han B; Conde L; Bracci PM; Riby J; Skibola CF; Eskin E; Halperin E
    Genetics; 2013 Jul; 194(3):769-79. PubMed ID: 23636738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Re-ranking sequencing variants in the post-GWAS era for accurate causal variant identification.
    Faye LL; Machiela MJ; Kraft P; Bull SB; Sun L
    PLoS Genet; 2013; 9(8):e1003609. PubMed ID: 23950724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using genotype array data to compare multi- and single-sample variant calls and improve variant call sets from deep coverage whole-genome sequencing data.
    Shringarpure SS; Mathias RA; Hernandez RD; O'Connor TD; Szpiech ZA; Torres R; De La Vega FM; Bustamante CD; Barnes KC; Taub MA;
    Bioinformatics; 2017 Apr; 33(8):1147-1153. PubMed ID: 28035032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast imputation using medium or low-coverage sequence data.
    VanRaden PM; Sun C; O'Connell JR
    BMC Genet; 2015 Jul; 16():82. PubMed ID: 26168789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of SNP calling using single and multiple-sample calling algorithms by validation against array base genotyping and Mendelian inheritance.
    Kumar P; Al-Shafai M; Al Muftah WA; Chalhoub N; Elsaid MF; Aleem AA; Suhre K
    BMC Res Notes; 2014 Oct; 7():747. PubMed ID: 25339461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genotype Calling from Population-Genomic Sequencing Data.
    Maruki T; Lynch M
    G3 (Bethesda); 2017 May; 7(5):1393-1404. PubMed ID: 28108551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imputing Genotypes in Biallelic Populations from Low-Coverage Sequence Data.
    Fragoso CA; Heffelfinger C; Zhao H; Dellaporta SL
    Genetics; 2016 Feb; 202(2):487-95. PubMed ID: 26715670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MPD: multiplex primer design for next-generation targeted sequencing.
    Wingo TS; Kotlar A; Cutler DJ
    BMC Bioinformatics; 2017 Jan; 18(1):14. PubMed ID: 28056760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal sequencing strategies for identifying disease-associated singletons.
    Rashkin S; Jun G; Chen S; ; Abecasis GR
    PLoS Genet; 2017 Jun; 13(6):e1006811. PubMed ID: 28640830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing variant calling algorithms for target-exon sequencing in a large sample.
    Lo Y; Kang HM; Nelson MR; Othman MI; Chissoe SL; Ehm MG; Abecasis GR; Zöllner S
    BMC Bioinformatics; 2015 Mar; 16():75. PubMed ID: 25884587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Next-generation sequencing using a pre-designed gene panel for the molecular diagnosis of congenital disorders in pediatric patients.
    Lim EC; Brett M; Lai AH; Lee SP; Tan ES; Jamuar SS; Ng IS; Tan EC
    Hum Genomics; 2015 Dec; 9():33. PubMed ID: 26666243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.