BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 27813827)

  • 1. The Central Control of Energy Expenditure: Exploiting Torpor for Medical Applications.
    Cerri M
    Annu Rev Physiol; 2017 Feb; 79():167-186. PubMed ID: 27813827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Basking hamsters reduce resting metabolism, body temperature and energy costs during rewarming from torpor.
    Geiser F; Gasch K; Bieber C; Stalder GL; Gerritsmann H; Ruf T
    J Exp Biol; 2016 Jul; 219(Pt 14):2166-72. PubMed ID: 27207637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Daily torpor and hibernation in birds and mammals.
    Ruf T; Geiser F
    Biol Rev Camb Philos Soc; 2015 Aug; 90(3):891-926. PubMed ID: 25123049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural hypometabolism during hibernation and daily torpor in mammals.
    Heldmaier G; Ortmann S; Elvert R
    Respir Physiol Neurobiol; 2004 Aug; 141(3):317-29. PubMed ID: 15288602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does Basal Metabolism Set the Limit for Metabolic Downregulation during Torpor?
    Boratyński JS; Szafrańska PA
    Physiol Biochem Zool; 2018; 91(5):1057-1067. PubMed ID: 30141728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Central nervous system regulation of mammalian hibernation: implications for metabolic suppression and ischemia tolerance.
    Drew KL; Buck CL; Barnes BM; Christian SL; Rasley BT; Harris MB
    J Neurochem; 2007 Sep; 102(6):1713-1726. PubMed ID: 17555547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic rate depression: the biochemistry of mammalian hibernation.
    Storey KB; Storey JM
    Adv Clin Chem; 2010; 52():77-108. PubMed ID: 21275340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Be cool to be far: Exploiting hibernation for space exploration.
    Cerri M; Hitrec T; Luppi M; Amici R
    Neurosci Biobehav Rev; 2021 Sep; 128():218-232. PubMed ID: 34144115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-Torpid Heterothermy in Mammals: Another Category along the Homeothermy-Hibernation Continuum.
    Levesque DL; Breit AM; Brown E; Nowack J; Welman S
    Integr Comp Biol; 2023 Dec; 63(5):1039-1048. PubMed ID: 37407285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human torpor: translating insights from nature into manned deep space expedition.
    Shi Z; Qin M; Huang L; Xu T; Chen Y; Hu Q; Peng S; Peng Z; Qu LN; Chen SG; Tuo QH; Liao DF; Wang XP; Wu RR; Yuan TF; Li YH; Liu XM
    Biol Rev Camb Philos Soc; 2021 Apr; 96(2):642-672. PubMed ID: 33314677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiant heat affects thermoregulation and energy expenditure during rewarming from torpor.
    Geiser F; Drury RL
    J Comp Physiol B; 2003 Feb; 173(1):55-60. PubMed ID: 12592443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estrogen-sensitive medial preoptic area neurons coordinate torpor in mice.
    Zhang Z; Reis FMCV; He Y; Park JW; DiVittorio JR; Sivakumar N; van Veen JE; Maesta-Pereira S; Shum M; Nichols I; Massa MG; Anderson S; Paul K; Liesa M; Ajijola OA; Xu Y; Adhikari A; Correa SM
    Nat Commun; 2020 Dec; 11(1):6378. PubMed ID: 33311503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of thermoregulation and torpor in a marsupial: energetic and evolutionary implications.
    Geiser F; Westman W; McAllan BM; Brigham RM
    J Comp Physiol B; 2006 Feb; 176(2):107-16. PubMed ID: 16177893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermoregulatory role of ghrelin in the induction of torpor under a restricted feeding condition.
    Sato T; Oishi K; Koga D; Ida T; Sakai Y; Kangawa K; Kojima M
    Sci Rep; 2021 Sep; 11(1):17954. PubMed ID: 34518616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A heterothermic spectrum in hummingbirds.
    Shankar A; Cisneros INH; Thompson S; Graham CH; Powers DR
    J Exp Biol; 2022 Jan; 225(2):. PubMed ID: 34989393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antipsychotic inductors of brain hypothermia and torpor-like states: perspectives of application.
    Tarahovsky YS; Fadeeva IS; Komelina NP; Khrenov MO; Zakharova NM
    Psychopharmacology (Berl); 2017 Jan; 234(2):173-184. PubMed ID: 27933367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypometabolism during Daily Torpor in Mice is Dominated by Reduction in the Sensitivity of the Thermoregulatory System.
    Sunagawa GA; Takahashi M
    Sci Rep; 2016 Nov; 6():37011. PubMed ID: 27845399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bats on a budget: torpor-assisted migration saves time and energy.
    McGuire LP; Jonasson KA; Guglielmo CG
    PLoS One; 2014; 9(12):e115724. PubMed ID: 25551615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of energy availability in Mammalian hibernation: a cost-benefit approach.
    Humphries MM; Thomas DW; Kramer DL
    Physiol Biochem Zool; 2003; 76(2):165-79. PubMed ID: 12794670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Central adenosine receptor signaling is necessary for daily torpor in mice.
    Iliff BW; Swoap SJ
    Am J Physiol Regul Integr Comp Physiol; 2012 Sep; 303(5):R477-84. PubMed ID: 22785425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.