These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 27814030)

  • 1. The Physiology and Ecology of Diapause in Marine Copepods.
    Baumgartner MF; Tarrant AM
    Ann Rev Mar Sci; 2017 Jan; 9():387-411. PubMed ID: 27814030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Advances in copepod resting egg ecology in estuarine and coastal waters].
    Wang Q; Luan LL; Chen LD; Yang YF
    Ying Yong Sheng Tai Xue Bao; 2015 Jul; 26(7):2213-24. PubMed ID: 26710652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Projected impacts of 21st century climate change on diapause in Calanus finmarchicus.
    Wilson RJ; Banas NS; Heath MR; Speirs DC
    Glob Chang Biol; 2016 Oct; 22(10):3332-40. PubMed ID: 26990351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copepod Embryonic Dormancy: "An Egg Is Not Just an Egg".
    Winding Hansen B
    Biol Bull; 2019 Oct; 237(2):145-169. PubMed ID: 31714859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diapause within the Context of Life-History Strategies in Calanid Copepods (Calanoida: Crustacea).
    Lenz PH; Roncalli V
    Biol Bull; 2019 Oct; 237(2):170-179. PubMed ID: 31714852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anthropogenic climate change impacts on copepod trait biogeography.
    McGinty N; Barton AD; Record NR; Finkel ZV; Johns DG; Stock CA; Irwin AJ
    Glob Chang Biol; 2021 Apr; 27(7):1431-1442. PubMed ID: 33347685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De novo transcriptome assembly of the calanoid copepod Neocalanus flemingeri: A new resource for emergence from diapause.
    Roncalli V; Cieslak MC; Sommer SA; Hopcroft RR; Lenz PH
    Mar Genomics; 2018 Feb; 37():114-119. PubMed ID: 28919018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The β-oxidation pathway is downregulated during diapause termination in Calanus copepods.
    Skottene E; Tarrant AM; Olsen AJ; Altin D; Østensen MA; Hansen BH; Choquet M; Jenssen BM; Olsen RE
    Sci Rep; 2019 Nov; 9(1):16686. PubMed ID: 31723179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Crude Awakening: Effects of Crude Oil on Lipid Metabolism in Calanoid Copepods Terminating Diapause.
    Skottene E; Tarrant AM; Olsen AJ; Altin D; Hansen BH; Choquet M; Olsen RE; Jenssen BM
    Biol Bull; 2019 Oct; 237(2):90-110. PubMed ID: 31714858
    [No Abstract]   [Full Text] [Related]  

  • 10. The ultrastructure of resurrection: Post-diapause development in an Antarctic freshwater copepod.
    Reed KA; Lee SG; Lee JH; Park H; Covi JA
    J Struct Biol; 2021 Mar; 213(1):107705. PubMed ID: 33577904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changing climate cues differentially alter zooplankton dormancy dynamics across latitudes.
    Jones NT; Gilbert B
    J Anim Ecol; 2016 Mar; 85(2):559-69. PubMed ID: 26590065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cladocerans versus copepods: the cause of contrasting top-down controls on freshwater and marine phytoplankton.
    Sommer U; Sommer F
    Oecologia; 2006 Mar; 147(2):183-94. PubMed ID: 16341887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional Profiling of Metabolic Transitions during Development and Diapause Preparation in the Copepod Calanus finmarchicus.
    Tarrant AM; Baumgartner MF; Lysiak NS; Altin D; Størseth TR; Hansen BH
    Integr Comp Biol; 2016 Dec; 56(6):1157-1169. PubMed ID: 27252191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pan-Arctic Depth Distribution of Diapausing
    Kvile KØ; Ashjian C; Ji R
    Biol Bull; 2019 Oct; 237(2):76-89. PubMed ID: 31714854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mismatch between marine plankton range movements and the velocity of climate change.
    Chivers WJ; Walne AW; Hays GC
    Nat Commun; 2017 Feb; 8():14434. PubMed ID: 28186097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eggs of the copepod Acartia tonsa Dana require hypoxic conditions to tolerate prolonged embryonic development arrest.
    Jørgensen TS; Jepsen PM; Petersen HCB; Friis DS; Hansen BW
    BMC Ecol; 2019 Jan; 19(1):1. PubMed ID: 30646885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The genetic architecture underlying diapause termination in a planktonic crustacean.
    Czypionka T; Fields PD; Routtu J; van den Berg E; Ebert D; De Meester L
    Mol Ecol; 2019 Mar; 28(5):998-1008. PubMed ID: 30592346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heat shock protein expression during stress and diapause in the marine copepod Calanus finmarchicus.
    Aruda AM; Baumgartner MF; Reitzel AM; Tarrant AM
    J Insect Physiol; 2011 May; 57(5):665-75. PubMed ID: 21419129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ocean carbon sequestration: Particle fragmentation by copepods as a significant unrecognised factor?: Explicitly representing the role of copepods in biogeochemical models may fundamentally improve understanding of future ocean carbon storage.
    Mayor DJ; Gentleman WC; Anderson TR
    Bioessays; 2020 Dec; 42(12):e2000149. PubMed ID: 33174616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipid metabolism in Calanus finmarchicus is sensitive to variations in predation risk and food availability.
    Skottene E; Tarrant AM; Altin D; Olsen RE; Choquet M; Kvile KØ
    Sci Rep; 2020 Dec; 10(1):22322. PubMed ID: 33339843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.