These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 27814363)

  • 1. Using Matrix and Tensor Factorizations for the Single-Trial Analysis of Population Spike Trains.
    Onken A; Liu JK; Karunasekara PP; Delis I; Gollisch T; Panzeri S
    PLoS Comput Biol; 2016 Nov; 12(11):e1005189. PubMed ID: 27814363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decoding visual information from a population of retinal ganglion cells.
    Warland DK; Reinagel P; Meister M
    J Neurophysiol; 1997 Nov; 78(5):2336-50. PubMed ID: 9356386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computing complex visual features with retinal spike times.
    Gütig R; Gollisch T; Sompolinsky H; Meister M
    PLoS One; 2013; 8(1):e53063. PubMed ID: 23301021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Population coding in spike trains of simultaneously recorded retinal ganglion cells.
    Fernández E; Ferrandez J; Ammermüller J; Normann RA
    Brain Res; 2000 Dec; 887(1):222-9. PubMed ID: 11134610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning to make external sensory stimulus predictions using internal correlations in populations of neurons.
    Sederberg AJ; MacLean JN; Palmer SE
    Proc Natl Acad Sci U S A; 2018 Jan; 115(5):1105-1110. PubMed ID: 29348208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classifying the motion of visual stimuli from the spike response of a population of retinal ganglion cells.
    Cerquera A; Greschner M; Freund JA
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4082-5. PubMed ID: 19163609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the impact of common noise inputs on the network activity of retinal ganglion cells.
    Vidne M; Ahmadian Y; Shlens J; Pillow JW; Kulkarni J; Litke AM; Chichilnisky EJ; Simoncelli E; Paninski L
    J Comput Neurosci; 2012 Aug; 33(1):97-121. PubMed ID: 22203465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting every spike: a model for the responses of visual neurons.
    Keat J; Reinagel P; Reid RC; Meister M
    Neuron; 2001 Jun; 30(3):803-17. PubMed ID: 11430813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gibbs distribution analysis of temporal correlations structure in retina ganglion cells.
    Vasquez JC; Marre O; Palacios AG; Berry MJ; Cessac B
    J Physiol Paris; 2012; 106(3-4):120-7. PubMed ID: 22115900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The structure and precision of retinal spike trains.
    Berry MJ; Warland DK; Meister M
    Proc Natl Acad Sci U S A; 1997 May; 94(10):5411-6. PubMed ID: 9144251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spike-Triggered Covariance Analysis Reveals Phenomenological Diversity of Contrast Adaptation in the Retina.
    Liu JK; Gollisch T
    PLoS Comput Biol; 2015 Jul; 11(7):e1004425. PubMed ID: 26230927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial and temporal correlations of spike trains in frog retinal ganglion cells.
    Liu WZ; Jing W; Li H; Gong HQ; Liang PJ
    J Comput Neurosci; 2011 Jun; 30(3):543-53. PubMed ID: 20865311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chaos-induced modulation of reliability boosts output firing rate in downstream cortical areas.
    Tiesinga PH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 1):031912. PubMed ID: 15089327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural Firing Patterns Imply Low Sensitivity of Synaptic Plasticity to Spike Timing Compared with Firing Rate.
    Graupner M; Wallisch P; Ostojic S
    J Neurosci; 2016 Nov; 36(44):11238-11258. PubMed ID: 27807166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An uncertainty principle for neural coding: Conjugate representations of position and velocity are mapped onto firing rates and co-firing rates of neural spike trains.
    Grgurich R; Blair HT
    Hippocampus; 2020 Apr; 30(4):396-421. PubMed ID: 32065487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Testing a neural coding hypothesis using surrogate data.
    Hirata Y; Katori Y; Shimokawa H; Suzuki H; Blenkinsop TA; Lang EJ; Aihara K
    J Neurosci Methods; 2008 Jul; 172(2):312-22. PubMed ID: 18565591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting synchronous firing of large neural populations from sequential recordings.
    Sorochynskyi O; Deny S; Marre O; Ferrari U
    PLoS Comput Biol; 2021 Jan; 17(1):e1008501. PubMed ID: 33507938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of Retinal Ganglion Cell Firing Patterns Using Clustering Analysis Supplied with Failure Diagnosis.
    Ghahari A; Kumar SR; Badea TC
    Int J Neural Syst; 2018 Oct; 28(8):1850008. PubMed ID: 29631502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Markov chain Monte Carlo methods for decoding neural spike trains.
    Ahmadian Y; Pillow JW; Paninski L
    Neural Comput; 2011 Jan; 23(1):46-96. PubMed ID: 20964539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. See globally, spike locally: oscillations in a retinal model encode large visual features.
    Stephens GJ; Neuenschwander S; George JS; Singer W; Kenyon GT
    Biol Cybern; 2006 Oct; 95(4):327-48. PubMed ID: 16897092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.