These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 27814897)
21. Occurrence of PAOI in a low temperature EBPR system. Tian WD; Lopez-Vazquez CM; Li WG; Brdjanovic D; van Loosdrecht MC Chemosphere; 2013 Aug; 92(10):1314-20. PubMed ID: 23732004 [TBL] [Abstract][Full Text] [Related]
22. Investigation on polyphosphate accumulation in the sulfur transformation-centric EBPR (SEBPR) process for treatment of high-temperature saline wastewater. Wang HG; Huang H; Liu RL; Mao YP; Biswal BK; Chen GH; Wu D Water Res; 2019 Dec; 167():115138. PubMed ID: 31585382 [TBL] [Abstract][Full Text] [Related]
23. Effect of pH reduction on polyphosphate- and glycogen-accumulating organisms in enhanced biological phosphorus removal processes. Fukushima T; Onuki M; Satoh H; Mino T Water Sci Technol; 2010; 62(6):1432-9. PubMed ID: 20861560 [TBL] [Abstract][Full Text] [Related]
24. Toward Integrating EBPR and the Short-Cut Nitrogen Removal Process in a One-Stage System for Treating High-Strength Wastewater. Kang D; Yuan Z; Li G; Lee J; Han IL; Wang D; Zheng P; Reid MC; Gu AZ Environ Sci Technol; 2023 Sep; 57(35):13247-13257. PubMed ID: 37615362 [TBL] [Abstract][Full Text] [Related]
25. Pushing the limits of solids retention time for enhanced biological phosphorus removal: process characteristics and Accumulibacter population structure. Roots P; Rosenthal A; Wang Y; Sabba F; Jia Z; Yang F; Zhang H; Kozak J; Wells G Water Sci Technol; 2020 Oct; 82(8):1614-1627. PubMed ID: 33107855 [TBL] [Abstract][Full Text] [Related]
26. Modeling hydraulic transport and anaerobic uptake by PAOs and GAOs during wastewater feeding in EBPR granular sludge reactors. Weissbrodt DG; Holliger C; Morgenroth E Biotechnol Bioeng; 2017 Aug; 114(8):1688-1702. PubMed ID: 28322436 [TBL] [Abstract][Full Text] [Related]
28. The impact of temperature on the metabolism of volatile fatty acids by polyphosphate accumulating organisms (PAOs). Wang L; Shen N; Oehmen A; Zhou Y Environ Res; 2020 Sep; 188():109729. PubMed ID: 32521304 [TBL] [Abstract][Full Text] [Related]
29. Investigation of the polyphosphate-accumulating organism population in the full-scale simultaneous chemical phosphorus removal system. Wang B; Jiao E; Guo Y; Zhang L; Meng Q; Zeng W; Peng Y Environ Sci Pollut Res Int; 2020 Oct; 27(30):37877-37886. PubMed ID: 32617817 [TBL] [Abstract][Full Text] [Related]
30. A Critical Assessment of the Microorganisms Proposed to be Important to Enhanced Biological Phosphorus Removal in Full-Scale Wastewater Treatment Systems. Stokholm-Bjerregaard M; McIlroy SJ; Nierychlo M; Karst SM; Albertsen M; Nielsen PH Front Microbiol; 2017; 8():718. PubMed ID: 28496434 [TBL] [Abstract][Full Text] [Related]
31. Microbiological study of bacteriophage induction in the presence of chemical stress factors in enhanced biological phosphorus removal (EBPR). Motlagh AM; Bhattacharjee AS; Goel R Water Res; 2015 Sep; 81():1-14. PubMed ID: 26024959 [TBL] [Abstract][Full Text] [Related]
32. Long-term simulation of a full-scale EBPR plant with a novel metabolic-ASM model and its use as a diagnostic tool. Santos JMM; Martins A; Barreto S; Rieger L; Reis M; Oehmen A Water Res; 2020 Dec; 187():116398. PubMed ID: 32942180 [TBL] [Abstract][Full Text] [Related]
33. Carbon uptake bioenergetics of PAOs and GAOs in full-scale enhanced biological phosphorus removal systems. Chen L; Chen H; Hu Z; Tian Y; Wang C; Xie P; Deng X; Zhang Y; Tang X; Lin X; Li B; Wei C; Qiu G Water Res; 2022 Jun; 216():118258. PubMed ID: 35320769 [TBL] [Abstract][Full Text] [Related]
34. Enhanced biological phosphorus removal in aerobic granular sludge reactors by granular activated carbon dosing. Sarvajith M; Nancharaiah YV Sci Total Environ; 2022 Jun; 823():153643. PubMed ID: 35124048 [TBL] [Abstract][Full Text] [Related]
35. Widespread detection of Candidatus Accumulibacter phosphatis, a polyphosphate-accumulating organism, in sediments of the Columbia River estuary. Watson SJ; Needoba JA; Peterson TD Environ Microbiol; 2019 Apr; 21(4):1369-1382. PubMed ID: 30815950 [TBL] [Abstract][Full Text] [Related]
36. A practical method for quantification of phosphorus- and glycogen-accumulating organism populations in activated sludge systems. López-Vázquez CM; Hooijmans CM; Brdjanovic D; Gijzen HJ; van Loosdrecht MC Water Environ Res; 2007 Dec; 79(13):2487-98. PubMed ID: 18198694 [TBL] [Abstract][Full Text] [Related]
37. The impact of pH on the anaerobic and aerobic metabolism of Tetrasphaera-enriched polyphosphate accumulating organisms. Nguyen PY; Marques R; Wang H; Reis MAM; Carvalho G; Oehmen A Water Res X; 2023 May; 19():100177. PubMed ID: 37008369 [TBL] [Abstract][Full Text] [Related]
38. Impact of solid residence time (SRT) on functionally relevant microbial populations and performance in full-scale enhanced biological phosphorus removal (EBPR) systems. Onnis-Hayden A; Majed N; Li Y; Rahman SM; Drury D; Risso L; Gu AZ Water Environ Res; 2020 Mar; 92(3):389-402. PubMed ID: 31329319 [TBL] [Abstract][Full Text] [Related]
39. Metabolism and ecological niche of Tetrasphaera and Ca. Accumulibacter in enhanced biological phosphorus removal. Marques R; Santos J; Nguyen H; Carvalho G; Noronha JP; Nielsen PH; Reis MAM; Oehmen A Water Res; 2017 Oct; 122():159-171. PubMed ID: 28599161 [TBL] [Abstract][Full Text] [Related]
40. A review of the phosphorus removal of polyphosphate-accumulating organisms in natural and engineered systems. Zhang Y; Qiu X; Luo J; Li H; How SW; Wu D; He J; Cheng Z; Gao Y; Lu H Sci Total Environ; 2024 Feb; 912():169103. PubMed ID: 38065508 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]