These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 27814914)
21. Band broadening in fast gradient high-performance liquid chromatography: application to the second generation of 4.6 mm I.D. silica monolithic columns. Gritti F; Guiochon G J Chromatogr A; 2012 May; 1238():77-90. PubMed ID: 22503619 [TBL] [Abstract][Full Text] [Related]
22. Approaches to model the retention and peak profile in linear gradient reversed-phase liquid chromatography. Baeza-Baeza JJ; Ortiz-Bolsico C; Torres-Lapasió JR; García-Álvarez-Coque MC J Chromatogr A; 2013 Apr; 1284():28-35. PubMed ID: 23453677 [TBL] [Abstract][Full Text] [Related]
23. Improvement of an overloaded, multi-component, solvent gradient bioseparation through multiobjective optimization. Tarafder A; Aumann L; Müller-Späth T; Morbidelli M J Chromatogr A; 2007 Oct; 1167(1):42-53. PubMed ID: 17765250 [TBL] [Abstract][Full Text] [Related]
24. Cholesterol-based polymeric monolithic columns for capillary liquid chromatography. Part II. Grzywiński D; Szumski M; Buszewski B J Chromatogr A; 2015 Aug; 1408():145-50. PubMed ID: 26187765 [TBL] [Abstract][Full Text] [Related]
25. High-temperature separations on a polymer-coated fibrous stationary phase in microcolumn liquid chromatography. Nakane K; Shirai S; Saito Y; Moriwake Y; Ueta I; Inoue M; Jinno K Anal Sci; 2011; 27(8):811-6. PubMed ID: 21828918 [TBL] [Abstract][Full Text] [Related]
26. The impact of column inner diameter on chromatographic performance in temperature gradient liquid chromatography. Molander P; Olsen R; Lundanes E; Greibrokk T Analyst; 2003 Nov; 128(11):1341-5. PubMed ID: 14700227 [TBL] [Abstract][Full Text] [Related]
27. Peak dispersion in gradient elution: An insight based on the plate model. Baeza-Baeza JJ; García-Alvarez-Coque MC J Chromatogr A; 2020 Feb; 1613():460670. PubMed ID: 31732158 [TBL] [Abstract][Full Text] [Related]
30. Impact of particle size gradients on the apparent efficiency of chromatographic columns. Codesido S; Rudaz S; Veuthey JL; Guillarme D; Desmet G; Fekete S J Chromatogr A; 2019 Oct; 1603():208-215. PubMed ID: 31266645 [TBL] [Abstract][Full Text] [Related]
31. High-temperature liquid chromatography. Part III: Determination of the static permittivities of pure solvents and binary solvent mixtures--implications for liquid chromatographic separations. Teutenberg T; Wiese S; Wagner P; Gmehling J J Chromatogr A; 2009 Nov; 1216(48):8480-7. PubMed ID: 19833344 [TBL] [Abstract][Full Text] [Related]
32. Assessment of the complementarity of temperature and flow-rate for response normalisation of aerosol-based detectors. Khandagale MM; Hilder EF; Shellie RA; Haddad PR J Chromatogr A; 2014 Aug; 1356():180-7. PubMed ID: 25001337 [TBL] [Abstract][Full Text] [Related]
33. Band broadening along gradient reversed phase columns: a potential gain in resolution factor. Gritti F; Guiochon G J Chromatogr A; 2014 May; 1342():24-9. PubMed ID: 24735602 [TBL] [Abstract][Full Text] [Related]
34. Combination of linear solvent strength model and quantitative structure-retention relationships as a comprehensive procedure of approximate prediction of retention in gradient liquid chromatography. Baczek T; Kaliszan R J Chromatogr A; 2002 Jul; 962(1-2):41-55. PubMed ID: 12198971 [TBL] [Abstract][Full Text] [Related]
35. Mismatch between sample diluent and eluent: Maintaining integrity of gradient peaks using in silico approaches. Gritti F; Gilar M; Hill J J Chromatogr A; 2019 Dec; 1608():460414. PubMed ID: 31416623 [TBL] [Abstract][Full Text] [Related]
36. Simulation of elution profiles in liquid chromatography - III. Stationary phase gradients. Jeong LN; Rutan SC J Chromatogr A; 2018 Aug; 1564():128-136. PubMed ID: 29937121 [TBL] [Abstract][Full Text] [Related]
37. Adsorption mechanisms and effect of temperature in reversed-phase liquid chromatography. meaning of the classical Van't Hoff plot in chromatography. Gritti F; Guiochon G Anal Chem; 2006 Jul; 78(13):4642-53. PubMed ID: 16808477 [TBL] [Abstract][Full Text] [Related]
38. A general strategy for performing temperature-programming in high performance liquid chromatography--prediction of segmented temperature gradients. Wiese S; Teutenberg T; Schmidt TC J Chromatogr A; 2011 Sep; 1218(39):6898-906. PubMed ID: 21872258 [TBL] [Abstract][Full Text] [Related]
39. Modeling of overloaded gradient elution of nociceptin/orphanin FQ in reversed-phase liquid chromatography. Marchetti N; Dondi F; Felinger A; Guerrini R; Salvadori S; Cavazzini A J Chromatogr A; 2005 Jun; 1079(1-2):162-72. PubMed ID: 16038302 [TBL] [Abstract][Full Text] [Related]
40. [General retention time formulae for gradient liquid chromatography with any combination of isocratic, linear and stepwise gradients]. Hao W; Di B; Yang Y; Chen Q; Wang J Se Pu; 2010 Jun; 28(6):541-6. PubMed ID: 20873572 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]