These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 27814971)

  • 21. Artificial Intelligence Approach in Biomechanics of Gait and Sport: A Systematic Literature Review.
    Molavian R; Fatahi A; Abbasi H; Khezri D
    J Biomed Phys Eng; 2023 Oct; 13(5):383-402. PubMed ID: 37868944
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physical sciences.
    Stevens PM
    Prosthet Orthot Int; 2020 Dec; 44(6):373-383. PubMed ID: 33158407
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inter-laboratory comparison of knee biomechanics and muscle activation patterns during gait in patients with knee osteoarthritis.
    Schrijvers JC; Rutherford D; Richards R; van den Noort JC; van der Esch M; Harlaar J
    Knee; 2021 Mar; 29():500-509. PubMed ID: 33756260
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Are Gait Patterns during In-Lab Running Representative of Gait Patterns during Real-World Training? An Experimental Study.
    Davis JJ; Meardon SA; Brown AW; Raglin JS; Harezlak J; Gruber AH
    Sensors (Basel); 2024 May; 24(9):. PubMed ID: 38732998
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of a new low-cost computer vision system for human gait analysis: A case study.
    Bernal-Torres MG; Medellín-Castillo HI; Arellano-González JC
    Proc Inst Mech Eng H; 2023 May; 237(5):628-641. PubMed ID: 36950949
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Moving outside the lab: Markerless motion capture accurately quantifies sagittal plane kinematics during the vertical jump.
    Drazan JF; Phillips WT; Seethapathi N; Hullfish TJ; Baxter JR
    J Biomech; 2021 Aug; 125():110547. PubMed ID: 34175570
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantification of human motion: gait analysis-benefits and limitations to its application to clinical problems.
    Simon SR
    J Biomech; 2004 Dec; 37(12):1869-80. PubMed ID: 15519595
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comparison of three-dimensional kinematics between markerless and marker-based motion capture in overground gait.
    Ripic Z; Nienhuis M; Signorile JF; Best TM; Jacobs KA; Eltoukhy M
    J Biomech; 2023 Oct; 159():111793. PubMed ID: 37725886
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MoVi: A large multi-purpose human motion and video dataset.
    Ghorbani S; Mahdaviani K; Thaler A; Kording K; Cook DJ; Blohm G; Troje NF
    PLoS One; 2021; 16(6):e0253157. PubMed ID: 34138926
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Laetoli footprints reveal bipedal gait biomechanics different from those of modern humans and chimpanzees.
    Hatala KG; Demes B; Richmond BG
    Proc Biol Sci; 2016 Aug; 283(1836):. PubMed ID: 27488647
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using wearable sensors to classify subject-specific running biomechanical gait patterns based on changes in environmental weather conditions.
    Ahamed NU; Kobsar D; Benson L; Clermont C; Kohrs R; Osis ST; Ferber R
    PLoS One; 2018; 13(9):e0203839. PubMed ID: 30226903
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surgical data science - from concepts toward clinical translation.
    Maier-Hein L; Eisenmann M; Sarikaya D; März K; Collins T; Malpani A; Fallert J; Feussner H; Giannarou S; Mascagni P; Nakawala H; Park A; Pugh C; Stoyanov D; Vedula SS; Cleary K; Fichtinger G; Forestier G; Gibaud B; Grantcharov T; Hashizume M; Heckmann-Nötzel D; Kenngott HG; Kikinis R; Mündermann L; Navab N; Onogur S; Roß T; Sznitman R; Taylor RH; Tizabi MD; Wagner M; Hager GD; Neumuth T; Padoy N; Collins J; Gockel I; Goedeke J; Hashimoto DA; Joyeux L; Lam K; Leff DR; Madani A; Marcus HJ; Meireles O; Seitel A; Teber D; Ückert F; Müller-Stich BP; Jannin P; Speidel S
    Med Image Anal; 2022 Feb; 76():102306. PubMed ID: 34879287
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biomechanics-based in silico medicine: the manifesto of a new science.
    Viceconti M
    J Biomech; 2015 Jan; 48(2):193-4. PubMed ID: 25482662
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gait analysis in orthopedic foot and ankle surgery--topical review, part 1: principles and uses of gait analysis.
    Mayich DJ; Novak A; Vena D; Daniels TR; Brodsky JW
    Foot Ankle Int; 2014 Jan; 35(1):80-90. PubMed ID: 24220612
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessing biomechanics and associated factors in individuals with patellofemoral pain in a clinical setting: A qualitative study based on interviews with expert clinicians.
    Leibbrandt D; Louw Q
    Knee; 2022 Jan; 34():178-186. PubMed ID: 34933238
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effectiveness of gait retraining interventions in individuals with hip or knee osteoarthritis: A systematic review and meta-analysis.
    Rynne R; Le Tong G; Cheung RTH; Constantinou M
    Gait Posture; 2022 Jun; 95():164-175. PubMed ID: 35500366
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A review of research on equine locomotion and biomechanics.
    Leach DH; Dagg AI
    Equine Vet J; 1983 Apr; 15(2):93-102. PubMed ID: 6347686
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Research trends in equine movement analysis, future opportunities and potential barriers in the digital age: A scoping review from 1978 to 2018.
    Egan S; Brama P; McGrath D
    Equine Vet J; 2019 Nov; 51(6):813-824. PubMed ID: 30659639
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Generative deep learning applied to biomechanics: A new augmentation technique for motion capture datasets.
    Bicer M; Phillips ATM; Melis A; McGregor AH; Modenese L
    J Biomech; 2022 Nov; 144():111301. PubMed ID: 36201910
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.