These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

467 related articles for article (PubMed ID: 27814972)

  • 21. Kinematics of wrist joint flexion in overarm throws made by skilled subjects.
    Debicki DB; Gribble PL; Watts S; Hore J
    Exp Brain Res; 2004 Feb; 154(3):382-94. PubMed ID: 14598003
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The influence of tracking marker locations on three-dimensional wrist kinematics.
    Turner J; Forrester SE; Mears AC; Roberts JR
    J Sci Med Sport; 2020 Oct; 23(10):985-990. PubMed ID: 32284293
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Continuous and simultaneous estimation of finger kinematics using inputs from an EMG-to-muscle activation model.
    Ngeo JG; Tamei T; Shibata T
    J Neuroeng Rehabil; 2014 Aug; 11():122. PubMed ID: 25123024
    [TBL] [Abstract][Full Text] [Related]  

  • 24. EMG-based simultaneous and proportional estimation of wrist/hand kinematics in uni-lateral trans-radial amputees.
    Jiang N; Vest-Nielsen JL; Muceli S; Farina D
    J Neuroeng Rehabil; 2012 Jun; 9():42. PubMed ID: 22742707
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Estimation of distal arm joint angles from EMG and shoulder orientation for transhumeral prostheses.
    Akhtar A; Aghasadeghi N; Hargrove L; Bretl T
    J Electromyogr Kinesiol; 2017 Aug; 35():86-94. PubMed ID: 28624687
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Force-Length Relationship Modeling of Wrist and Finger Flexor Muscles.
    Hauraix H; Goislard DE Monsabert B; Herbaut A; Berton E; Vigouroux L
    Med Sci Sports Exerc; 2018 Nov; 50(11):2311-2321. PubMed ID: 29933345
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multimodal sensor controlled three Degree of Freedom transradial prosthesis.
    Ohnishi K; Morio T; Takagi T; Kajitani I
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650467. PubMed ID: 24187284
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Validation of the Leap Motion Controller using markered motion capture technology.
    Smeragliuolo AH; Hill NJ; Disla L; Putrino D
    J Biomech; 2016 Jun; 49(9):1742-1750. PubMed ID: 27102160
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Channel selection for simultaneous and proportional myoelectric prosthesis control of multiple degrees-of-freedom.
    Hwang HJ; Hahne JM; Müller KR
    J Neural Eng; 2014 Oct; 11(5):056008. PubMed ID: 25082779
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Two degrees of freedom quasi-static EMG-force at the wrist using a minimum number of electrodes.
    Clancy EA; Martinez-Luna C; Wartenberg M; Dai C; Farrell TR
    J Electromyogr Kinesiol; 2017 Jun; 34():24-36. PubMed ID: 28384495
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Real-time simulation of hand motion for prosthesis control.
    Blana D; Chadwick EK; van den Bogert AJ; Murray WM
    Comput Methods Biomech Biomed Engin; 2017 Apr; 20(5):540-549. PubMed ID: 27868425
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neuro-Musculoskeletal Mapping for Man-Machine Interfacing.
    Kapelner T; Sartori M; Negro F; Farina D
    Sci Rep; 2020 Apr; 10(1):5834. PubMed ID: 32242142
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hybrid neuromusculoskeletal modeling to best track joint moments using a balance between muscle excitations derived from electromyograms and optimization.
    Sartori M; Farina D; Lloyd DG
    J Biomech; 2014 Nov; 47(15):3613-21. PubMed ID: 25458151
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An EMG-Driven Musculoskeletal Model for Estimating Continuous Wrist Motion.
    Zhao Y; Zhang Z; Li Z; Yang Z; Dehghani-Sanij AA; Xie S
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):3113-3120. PubMed ID: 33186119
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An EMG-driven musculoskeletal model for the estimation of biomechanical parameters of wrist flexors.
    Colacino FM; Rustighi E; Mace BR
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4870-3. PubMed ID: 21096908
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Distal upper limb kinematics during functional everyday tasks.
    Stansfield B; Rooney S; Brown L; Kay M; Spoettl L; Shanmugam S
    Gait Posture; 2018 Mar; 61():135-140. PubMed ID: 29346082
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synergy-Space Recurrent Neural Network for Transferable Forearm Motion Prediction from Residual Limb Motion.
    Ahmed MH; Chai J; Shimoda S; Hayashibe M
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177396
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A musculoskeletal model driven by muscle synergy-derived excitations for hand and wrist movements.
    Zhao J; Yu Y; Wang X; Ma S; Sheng X; Zhu X
    J Neural Eng; 2022 Feb; 19(1):. PubMed ID: 34986472
    [No Abstract]   [Full Text] [Related]  

  • 39. Prediction of distal arm joint angles from EMG and shoulder orientation for prosthesis control.
    Akhtar A; Hargrove LJ; Bretl T
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4160-3. PubMed ID: 23366844
    [TBL] [Abstract][Full Text] [Related]  

  • 40. EMG-based learning approach for estimating wrist motion.
    El-Khoury S; Batzianoulis I; Antuvan CW; Contu S; Masia L; Micera S; Billard A
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6732-5. PubMed ID: 26737838
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.