BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 27815194)

  • 1. Evolutionary engineering reveals divergent paths when yeast is adapted to different acidic environments.
    Fletcher E; Feizi A; Bisschops MMM; Hallström BM; Khoomrung S; Siewers V; Nielsen J
    Metab Eng; 2017 Jan; 39():19-28. PubMed ID: 27815194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary and reverse engineering to increase Saccharomyces cerevisiae tolerance to acetic acid, acidic pH, and high temperature.
    Salas-Navarrete PC; de Oca Miranda AIM; Martínez A; Caspeta L
    Appl Microbiol Biotechnol; 2022 Jan; 106(1):383-399. PubMed ID: 34913993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Role of Ancestral Duplicated Genes in Adaptation to Growth on Lactate, a Non-Fermentable Carbon Source for the Yeast
    Mattenberger F; Fares MA; Toft C; Sabater-Muñoz B
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of d-Lactic Acid Production in Saccharomyces cerevisiae Under Acidic Conditions by Evolutionary and Rational Metabolic Engineering.
    Baek SH; Kwon EY; Bae SJ; Cho BR; Kim SY; Hahn JS
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28731533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution reveals a glutathione-dependent mechanism of 3-hydroxypropionic acid tolerance.
    Kildegaard KR; Hallström BM; Blicher TH; Sonnenschein N; Jensen NB; Sherstyk S; Harrison SJ; Maury J; Herrgård MJ; Juncker AS; Forster J; Nielsen J; Borodina I
    Metab Eng; 2014 Nov; 26():57-66. PubMed ID: 25263954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional Response to Lactic Acid Stress in the Hybrid Yeast Zygosaccharomyces parabailii.
    Ortiz-Merino RA; Kuanyshev N; Byrne KP; Varela JA; Morrissey JP; Porro D; Wolfe KH; Branduardi P
    Appl Environ Microbiol; 2018 Mar; 84(5):. PubMed ID: 29269498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive responses of yeast strains tolerant to acidic pH, acetate, and supraoptimal temperature.
    Salas-Navarrete PC; Rosas-Santiago P; Suárez-Rodríguez R; Martínez A; Caspeta L
    Appl Microbiol Biotechnol; 2023 Jun; 107(12):4051-4068. PubMed ID: 37178307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p.
    Kawahata M; Masaki K; Fujii T; Iefuji H
    FEMS Yeast Res; 2006 Sep; 6(6):924-36. PubMed ID: 16911514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological and transcriptional responses to high concentrations of lactic acid in anaerobic chemostat cultures of Saccharomyces cerevisiae.
    Abbott DA; Suir E; van Maris AJ; Pronk JT
    Appl Environ Microbiol; 2008 Sep; 74(18):5759-68. PubMed ID: 18676708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological and molecular analysis of the stress response of Saccharomyces cerevisiae imposed by strong inorganic acid with implication to industrial fermentations.
    de Melo HF; Bonini BM; Thevelein J; Simões DA; Morais MA
    J Appl Microbiol; 2010 Jul; 109(1):116-27. PubMed ID: 20002866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Saccharomyces cerevisiae GAS1 with respect to its involvement in tolerance to low pH and salt stress.
    Matsushika A; Suzuki T; Goshima T; Hoshino T
    J Biosci Bioeng; 2017 Aug; 124(2):164-170. PubMed ID: 28476241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lactic-acid stress causes vacuolar fragmentation and impairs intracellular amino-acid homeostasis in Saccharomyces cerevisiae.
    Suzuki T; Sugiyama M; Wakazono K; Kaneko Y; Harashima S
    J Biosci Bioeng; 2012 Apr; 113(4):421-30. PubMed ID: 22177309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elucidating aromatic acid tolerance at low pH in
    Pereira R; Mohamed ET; Radi MS; Herrgård MJ; Feist AM; Nielsen J; Chen Y
    Proc Natl Acad Sci U S A; 2020 Nov; 117(45):27954-27961. PubMed ID: 33106428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic, transcriptomic and physiological analyses of silver-resistant Saccharomyces cerevisiae obtained by evolutionary engineering.
    Terzioğlu E; Alkım C; Arslan M; Balaban BG; Holyavkin C; Kısakesen Hİ; Topaloğlu A; Yılmaz Şahin Ü; Gündüz Işık S; Akman S; Çakar ZP
    Yeast; 2020 Sep; 37(9-10):413-426. PubMed ID: 33464648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive laboratory evolution of tolerance to dicarboxylic acids in Saccharomyces cerevisiae.
    Pereira R; Wei Y; Mohamed E; Radi M; Malina C; Herrgård MJ; Feist AM; Nielsen J; Chen Y
    Metab Eng; 2019 Dec; 56():130-141. PubMed ID: 31550508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in SAM2 expression affect lactic acid tolerance and lactic acid production in Saccharomyces cerevisiae.
    Dato L; Berterame NM; Ricci MA; Paganoni P; Palmieri L; Porro D; Branduardi P
    Microb Cell Fact; 2014 Oct; 13():147. PubMed ID: 25359316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Participation of CWI, HOG and Calcineurin pathways in the tolerance of Saccharomyces cerevisiae to low pH by inorganic acid.
    de Lucena RM; Elsztein C; Simões DA; de Morais MA
    J Appl Microbiol; 2012 Sep; 113(3):629-40. PubMed ID: 22702539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Post-translocational adaptation drives evolution through genetic selection and transcriptional shift in Saccharomyces cerevisiae.
    Tosato V; Sims J; West N; Colombin M; Bruschi CV
    Curr Genet; 2017 May; 63(2):281-292. PubMed ID: 27491680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved Stress Tolerance of Saccharomyces cerevisiae by CRISPR-Cas-Mediated Genome Evolution.
    Mitsui R; Yamada R; Ogino H
    Appl Biochem Biotechnol; 2019 Nov; 189(3):810-821. PubMed ID: 31119529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stress Tolerance Variations in Saccharomyces cerevisiae Strains from Diverse Ecological Sources and Geographical Locations.
    Zheng YL; Wang SA
    PLoS One; 2015; 10(8):e0133889. PubMed ID: 26244846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.