These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 27815194)

  • 21. Cell periphery-related proteins as major genomic targets behind the adaptive evolution of an industrial Saccharomyces cerevisiae strain to combined heat and hydrolysate stress.
    Wallace-Salinas V; Brink DP; Ahrén D; Gorwa-Grauslund MF
    BMC Genomics; 2015 Jul; 16(1):514. PubMed ID: 26156140
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adaptive evolution of Saccharomyces cerevisiae with enhanced ethanol tolerance for Chinese rice wine fermentation.
    Chen S; Xu Y
    Appl Biochem Biotechnol; 2014 Aug; 173(7):1940-54. PubMed ID: 24879599
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pathway-based signature transcriptional profiles as tolerance phenotypes for the adapted industrial yeast Saccharomyces cerevisiae resistant to furfural and HMF.
    Liu ZL; Ma M
    Appl Microbiol Biotechnol; 2020 Apr; 104(8):3473-3492. PubMed ID: 32103314
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein aggregation and membrane lipid modifications under lactic acid stress in wild type and OPI1 deleted Saccharomyces cerevisiae strains.
    Berterame NM; Porro D; Ami D; Branduardi P
    Microb Cell Fact; 2016 Feb; 15():39. PubMed ID: 26887851
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In-silico identification and characterization of organic and inorganic chemical stress responding genes in yeast (Saccharomyces cerevisiae).
    Barozai MY; Bashir F; Muzaffar S; Afzal S; Behlil F; Khan M
    Gene; 2014 Oct; 550(1):74-80. PubMed ID: 25111117
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermotolerant Yeast Strains Adapted by Laboratory Evolution Show Trade-Off at Ancestral Temperatures and Preadaptation to Other Stresses.
    Caspeta L; Nielsen J
    mBio; 2015 Jul; 6(4):e00431. PubMed ID: 26199325
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering of global regulators and cell surface properties toward enhancing stress tolerance in Saccharomyces cerevisiae.
    Kuroda K; Ueda M
    J Biosci Bioeng; 2017 Dec; 124(6):599-605. PubMed ID: 28712705
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Free lactic acid production under acidic conditions by lactic acid bacteria strains: challenges and future prospects.
    Singhvi M; Zendo T; Sonomoto K
    Appl Microbiol Biotechnol; 2018 Jul; 102(14):5911-5924. PubMed ID: 29804138
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The genetic architecture of low-temperature adaptation in the wine yeast Saccharomyces cerevisiae.
    García-Ríos E; Morard M; Parts L; Liti G; Guillamón JM
    BMC Genomics; 2017 Feb; 18(1):159. PubMed ID: 28196526
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vivo evolutionary engineering for ethanol-tolerance of Saccharomyces cerevisiae haploid cells triggers diploidization.
    Turanlı-Yıldız B; Benbadis L; Alkım C; Sezgin T; Akşit A; Gökçe A; Öztürk Y; Baykal AT; Çakar ZP; François JM
    J Biosci Bioeng; 2017 Sep; 124(3):309-318. PubMed ID: 28552194
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adaptive Laboratory Evolution and Reverse Engineering of Single-Vitamin Prototrophies in Saccharomyces cerevisiae.
    Perli T; Moonen DPI; van den Broek M; Pronk JT; Daran JM
    Appl Environ Microbiol; 2020 Jun; 86(12):. PubMed ID: 32303542
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of stress tolerant Saccharomyces cerevisiae strains by metabolic engineering: New aspects from cell flocculation and zinc supplementation.
    Cheng C; Zhang M; Xue C; Bai F; Zhao X
    J Biosci Bioeng; 2017 Feb; 123(2):141-146. PubMed ID: 27576171
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification and Characterization of a Novel Issatchenkia orientalis GPI-Anchored Protein, IoGas1, Required for Resistance to Low pH and Salt Stress.
    Matsushika A; Negi K; Suzuki T; Goshima T; Hoshino T
    PLoS One; 2016; 11(9):e0161888. PubMed ID: 27589271
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improved stress resistance and ethanol production by segmental haploidization of the diploid genome in Saccharomyces cerevisiae.
    Kaboli S; Miyamoto T; Sunada K; Sasano Y; Sugiyama M; Harashima S
    J Biosci Bioeng; 2016 Jun; 121(6):638-644. PubMed ID: 26690924
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SCRaMbLE generates evolved yeasts with increased alkali tolerance.
    Ma L; Li Y; Chen X; Ding M; Wu Y; Yuan YJ
    Microb Cell Fact; 2019 Mar; 18(1):52. PubMed ID: 30857530
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulatory and evolutionary adaptation of yeast to acute lethal ethanol stress.
    Yang J; Tavazoie S
    PLoS One; 2020; 15(11):e0239528. PubMed ID: 33170850
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolutionary engineering reveals amino acid substitutions in Ato2 and Ato3 that allow improved growth of Saccharomyces cerevisiae on lactic acid.
    Baldi N; de Valk SC; Sousa-Silva M; Casal M; Soares-Silva I; Mans R
    FEMS Yeast Res; 2021 Jun; 21(4):. PubMed ID: 34042971
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of industrial yeast strain with improved acid- and thermo-tolerance through evolution under continuous fermentation conditions followed by haploidization and mating.
    Mitsumasu K; Liu ZS; Tang YQ; Akamatsu T; Taguchi H; Kida K
    J Biosci Bioeng; 2014 Dec; 118(6):689-95. PubMed ID: 24958128
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Influence of Polyploidy on the Evolution of Yeast Grown in a Sub-Optimal Carbon Source.
    Scott AL; Richmond PA; Dowell RD; Selmecki AM
    Mol Biol Evol; 2017 Oct; 34(10):2690-2703. PubMed ID: 28957510
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integrative responses to high pH stress in S. cerevisiae.
    Ariño J
    OMICS; 2010 Oct; 14(5):517-23. PubMed ID: 20726779
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.