These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 27815671)

  • 1. Integrating QTL mapping and transcriptomics identifies candidate genes underlying QTLs associated with soybean tolerance to low-phosphorus stress.
    Zhang D; Zhang H; Chu S; Li H; Chi Y; Triebwasser-Freese D; Lv H; Yu D
    Plant Mol Biol; 2017 Jan; 93(1-2):137-150. PubMed ID: 27815671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of QTL mapping and transcriptome profiling for identification of candidate genes associated with nitrogen stress tolerance in sorghum.
    Gelli M; Konda AR; Liu K; Zhang C; Clemente TE; Holding DR; Dweikat IM
    BMC Plant Biol; 2017 Jul; 17(1):123. PubMed ID: 28697783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping and cloning of low phosphorus tolerance genes in soybeans.
    Zhang D; Song HN; Cheng H; Yu DY
    Yi Chuan; 2015 Apr; 37(4):336-343. PubMed ID: 25881699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QTL mapping of domestication-related traits in soybean (Glycine max).
    Liu B; Fujita T; Yan ZH; Sakamoto S; Xu D; Abe J
    Ann Bot; 2007 Nov; 100(5):1027-38. PubMed ID: 17684023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Up-regulating GmETO1 improves phosphorus uptake and use efficiency by promoting root growth in soybean.
    Zhang H; Yang Y; Sun C; Liu X; Lv L; Hu Z; Yu D; Zhang D
    Plant Cell Environ; 2020 Sep; 43(9):2080-2094. PubMed ID: 32515009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of a high-density genetic map based on large-scale markers developed by specific length amplified fragment sequencing (SLAF-seq) and its application to QTL analysis for isoflavone content in Glycine max.
    Li B; Tian L; Zhang J; Huang L; Han F; Yan S; Wang L; Zheng H; Sun J
    BMC Genomics; 2014 Dec; 15(1):1086. PubMed ID: 25494922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acid phosphatase gene GmHAD1 linked to low phosphorus tolerance in soybean, through fine mapping.
    Cai Z; Cheng Y; Xian P; Ma Q; Wen K; Xia Q; Zhang G; Nian H
    Theor Appl Genet; 2018 Aug; 131(8):1715-1728. PubMed ID: 29754326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A cation diffusion facilitator, GmCDF1, negatively regulates salt tolerance in soybean.
    Zhang W; Liao X; Cui Y; Ma W; Zhang X; Du H; Ma Y; Ning L; Wang H; Huang F; Yang H; Kan G; Yu D
    PLoS Genet; 2019 Jan; 15(1):e1007798. PubMed ID: 30615606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a candidate gene associated with isoflavone content in soybean seeds using genome-wide association and linkage mapping.
    Wu D; Li D; Zhao X; Zhan Y; Teng W; Qiu L; Zheng H; Li W; Han Y
    Plant J; 2020 Nov; 104(4):950-963. PubMed ID: 32862479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The acid phosphatase-encoding gene GmACP1 contributes to soybean tolerance to low-phosphorus stress.
    Zhang D; Song H; Cheng H; Hao D; Wang H; Kan G; Jin H; Yu D
    PLoS Genet; 2014 Jan; 10(1):e1004061. PubMed ID: 24391523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loci and candidate gene identification for resistance to Sclerotinia sclerotiorum in soybean (Glycine max L. Merr.) via association and linkage maps.
    Zhao X; Han Y; Li Y; Liu D; Sun M; Zhao Y; Lv C; Li D; Yang Z; Huang L; Teng W; Qiu L; Zheng H; Li W
    Plant J; 2015 Apr; 82(2):245-55. PubMed ID: 25736370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative trait loci associated with soybean seed weight and composition under different phosphorus levels.
    Hacisalihoglu G; Burton AL; Gustin JL; Eker S; Asikli S; Heybet EH; Ozturk L; Cakmak I; Yazici A; Burkey KO; Orf J; Settles AM
    J Integr Plant Biol; 2018 Mar; 60(3):232-241. PubMed ID: 29131514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic mapping high protein content QTL from soybean 'Nanxiadou 25' and candidate gene analysis.
    Wang J; Mao L; Zeng Z; Yu X; Lian J; Feng J; Yang W; An J; Wu H; Zhang M; Liu L
    BMC Plant Biol; 2021 Aug; 21(1):388. PubMed ID: 34416870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a major QTL allele from wild soybean (Glycine soja Sieb. & Zucc.) for increasing alkaline salt tolerance in soybean.
    Tuyen DD; Lal SK; Xu DH
    Theor Appl Genet; 2010 Jul; 121(2):229-36. PubMed ID: 20204319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping quantitative trait loci associated with aluminum toxin tolerance in NJRIKY recombinant inbred line population of soybean (Glycine max).
    Qi B; Korir P; Zhao T; Yu D; Chen S; Gai J
    J Integr Plant Biol; 2008 Sep; 50(9):1089-95. PubMed ID: 18844777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. QTL mapping of the genetic basis of stem diameter in soybean.
    Sun CY; Yang YM; Jia L; Liu XQ; Xu HQ; Lv HY; Huang ZW; Zhang D
    Planta; 2021 Apr; 253(5):109. PubMed ID: 33871705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping quantitative trait loci for root development under hypoxia conditions in soybean (Glycine max L. Merr.).
    Van Nguyen L; Takahashi R; Githiri SM; Rodriguez TO; Tsutsumi N; Kajihara S; Sayama T; Ishimoto M; Harada K; Suematsu K; Abiko T; Mochizuki T
    Theor Appl Genet; 2017 Apr; 130(4):743-755. PubMed ID: 28097398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining QTL-seq and linkage mapping to fine map a wild soybean allele characteristic of greater plant height.
    Zhang X; Wang W; Guo N; Zhang Y; Bu Y; Zhao J; Xing H
    BMC Genomics; 2018 Mar; 19(1):226. PubMed ID: 29587637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a major quantitative trait locus underlying salt tolerance in 'Jidou 12' soybean cultivar.
    Shi X; Yan L; Yang C; Yan W; Moseley DO; Wang T; Liu B; Di R; Chen P; Zhang M
    BMC Res Notes; 2018 Feb; 11(1):95. PubMed ID: 29402302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping and validation of simple sequence repeat markers linked to a major gene controlling seed cadmium accumulation in soybean [Glycine max (L.) Merr].
    Jegadeesan S; Yu K; Poysa V; Gawalko E; Morrison MJ; Shi C; Cober E
    Theor Appl Genet; 2010 Jul; 121(2):283-94. PubMed ID: 20224890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.