These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 27815853)

  • 1. Simulation of arsenic retention in constructed wetlands.
    Valles-Aragón MC; Alarcón-Herrera MT; Llorens E; Obradors-Prats J; Leyva A
    Environ Sci Pollut Res Int; 2017 Jan; 24(3):2394-2401. PubMed ID: 27815853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance of Eleocharis macrostachya and its importance for arsenic retention in constructed wetlands.
    Olmos-Márquez MA; Alarcón-Herrera MT; Martín-Domínguez IR
    Environ Sci Pollut Res Int; 2012 Mar; 19(3):763-71. PubMed ID: 21935698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling of arsenic retention in constructed wetlands.
    Llorens E; Obradors J; Alarcón-Herrera MT; Poch M
    Bioresour Technol; 2013 Nov; 147():221-227. PubMed ID: 23994963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance comparison of constructed wetlands with gravel- and rice husk-based media for phenol and nitrogen removal.
    Tee HC; Seng CE; Noor AM; Lim PE
    Sci Total Environ; 2009 May; 407(11):3563-71. PubMed ID: 19272632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mathematical modeling of subsurface flow constructed wetlands performance for arsenic removal: Review and perspectives.
    Bravo-Riquelme D; Lizama-Allende K
    Sci Total Environ; 2024 Nov; 949():175061. PubMed ID: 39067586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of cultivated species and retention time on the performance of constructed wetlands.
    Sarmento AP; Borges AC; de Matos AT
    Environ Technol; 2013; 34(5-8):961-5. PubMed ID: 23837347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constructed wetlands as an alternative for arsenic removal from reverse osmosis effluent.
    Corroto C; Iriel A; Cirelli AF; Carrera ALP
    Sci Total Environ; 2019 Nov; 691():1242-1250. PubMed ID: 31466204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vegetation effects on anammox spatial distribution and nitrogen removal in constructed wetlands treated with domestic sewage.
    Wang L; Li T
    Water Sci Technol; 2014; 70(8):1370-5. PubMed ID: 25353942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological Cr(VI) removal using bio-filters and constructed wetlands.
    Michailides MK; Sultana MY; Tekerlekopoulou AG; Akratos CS; Vayenas DV
    Water Sci Technol; 2013; 68(10):2228-33. PubMed ID: 24292472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of fluoride and arsenic by pilot vertical-flow constructed wetlands using soil and coal cinder as substrate.
    Li J; Liu X; Yu Z; Yi X; Ju Y; Huang J; Liu R
    Water Sci Technol; 2014; 70(4):620-6. PubMed ID: 25116490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nutrient removal in tropical subsurface flow constructed wetlands under batch and continuous flow conditions.
    Zhang DQ; Tan SK; Gersberg RM; Zhu J; Sadreddini S; Li Y
    J Environ Manage; 2012 Apr; 96(1):1-6. PubMed ID: 22208392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative study of five horizontal subsurface flow constructed wetlands using different plant species for domestic wastewater treatment.
    Villaseñor Camacho J; De Lucas Martínez A; Gómez Gómez R; Mena Sanz J
    Environ Technol; 2007 Dec; 28(12):1333-43. PubMed ID: 18341144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of heavy metals from synthetic landfill leachate in lab-scale vertical flow constructed wetlands.
    A D; Oka M; Fujii Y; Soda S; Ishigaki T; Machimura T; Ike M
    Sci Total Environ; 2017 Apr; 584-585():742-750. PubMed ID: 28131455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced arsenic removals through plant interactions in subsurface-flow constructed wetlands.
    Singhakant C; Koottatep T; Satayavivad J
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Feb; 44(2):163-9. PubMed ID: 19123096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochar composite with microbes enhanced arsenic biosorption and phytoextraction by Typha latifolia in hybrid vertical subsurface flow constructed wetland.
    Irshad S; Xie Z; Kamran M; Nawaz A; Faheem ; Mehmood S; Gulzar H; Saleem MH; Rizwan M; Malik Z; Parveen A; Ali S
    Environ Pollut; 2021 Dec; 291():118269. PubMed ID: 34601037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of the substrate depth on purification performance of a hybrid constructed wetland treating domestic sewage.
    Ren YX; Zhang H; Wang C; Yang YZ; Qin Z; Ma Y
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(7):777-82. PubMed ID: 21644156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of physico-chemical pretreatment on the removal efficiency of horizontal subsurface-flow constructed wetlands.
    Caselles-Osorio A; Garcia J
    Environ Pollut; 2007 Mar; 146(1):55-63. PubMed ID: 16996180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a horizontal subsurface flow modular constructed wetland for urban runoff treatment.
    Choi JY; Maniquiz MC; Geronimo FK; Lee SY; Lee BS; Kim LH
    Water Sci Technol; 2012; 66(9):1950-7. PubMed ID: 22925868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactive transport of arsenic-enriched geothermal spring water into a sedimentary aquifer.
    Liu CW
    Environ Geochem Health; 2019 Apr; 41(2):633-648. PubMed ID: 30019202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fractional analysis of arsenic in subsurface-flow constructed wetlands with different length to depth ratios.
    Singhakant C; Koottatep T; Satayavivad J
    Water Sci Technol; 2009; 60(7):1771-8. PubMed ID: 19809139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.