These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 27815924)
1. The Simple and Unique Allosteric Machinery of Thermus caldophilus Lactate Dehydrogenase : Structure-Function Relationship in Bacterial Allosteric LDHs. Taguchi H Adv Exp Med Biol; 2017; 925():117-145. PubMed ID: 27815924 [TBL] [Abstract][Full Text] [Related]
2. The core of allosteric motion in Thermus caldophilus L-lactate dehydrogenase. Ikehara Y; Arai K; Furukawa N; Ohno T; Miyake T; Fushinobu S; Nakajima M; Miyanaga A; Taguchi H J Biol Chem; 2014 Nov; 289(45):31550-64. PubMed ID: 25258319 [TBL] [Abstract][Full Text] [Related]
3. Sampling the conformational energy landscape of a hyperthermophilic protein by engineering key substitutions. Colletier JP; Aleksandrov A; Coquelle N; Mraihi S; Mendoza-Barberá E; Field M; Madern D Mol Biol Evol; 2012 Jun; 29(6):1683-94. PubMed ID: 22319152 [TBL] [Abstract][Full Text] [Related]
4. Mechanism of allosteric transition of bacterial L-lactate dehydrogenase. Ohta T; Yokota K; Minowa T; Iwata S Faraday Discuss; 1992; (93):153-62. PubMed ID: 1290930 [TBL] [Abstract][Full Text] [Related]
5. An absolute requirement of fructose 1,6-bisphosphate for the Lactobacillus casei L-lactate dehydrogenase activity induced by a single amino acid substitution. Arai K; Hishida A; Ishiyama M; Kamata T; Uchikoba H; Fushinobu S; Matsuzawa H; Taguchi H Protein Eng; 2002 Jan; 15(1):35-41. PubMed ID: 11842236 [TBL] [Abstract][Full Text] [Related]
6. A molecular design that stabilizes active state in bacterial allosteric L-lactate dehydrogenases. Arai K; Ichikawa J; Nonaka S; Miyanaga A; Uchikoba H; Fushinobu S; Taguchi H J Biochem; 2011 Nov; 150(5):579-91. PubMed ID: 21828088 [TBL] [Abstract][Full Text] [Related]
7. L-Lactate dehydrogenase from Thermus caldophilus GK24, an extremely thermophilic bacterium. Desensitization to fructose 1,6-bisphosphate in the activated state by arginine-specific chemical modification and the N-terminal amino acid sequence. Taguchi H; Matsuzawa H; Ohta T Eur J Biochem; 1984 Dec; 145(2):283-90. PubMed ID: 6499843 [TBL] [Abstract][Full Text] [Related]
8. Interface Residues That Drive Allosteric Transitions Also Control the Assembly of l-Lactate Dehydrogenase. Chen J; Thirumalai D J Phys Chem B; 2018 Dec; 122(49):11195-11205. PubMed ID: 30102042 [TBL] [Abstract][Full Text] [Related]
9. Active and inactive state structures of unliganded Lactobacillus casei allosteric L-lactate dehydrogenase. Arai K; Ishimitsu T; Fushinobu S; Uchikoba H; Matsuzawa H; Taguchi H Proteins; 2010 Feb; 78(3):681-94. PubMed ID: 19787773 [TBL] [Abstract][Full Text] [Related]
10. Involvement of the conserved histidine-188 residue in the L-lactate dehydrogenase from Thermus caldophilus GK24 in allosteric regulation by fructose 1,6-bisphosphate. Schroeder G; Matsuzawa H; Ohta T Biochem Biophys Res Commun; 1988 May; 152(3):1236-41. PubMed ID: 3377774 [TBL] [Abstract][Full Text] [Related]
11. Sequence and characteristics of the Bifidobacterium longum gene encoding L-lactate dehydrogenase and the primary structure of the enzyme: a new feature of the allosteric site. Minowa T; Iwata S; Sakai H; Masaki H; Ohta T Gene; 1989 Dec; 85(1):161-8. PubMed ID: 2695396 [TBL] [Abstract][Full Text] [Related]
12. Nucleotide sequence and characteristics of the gene for L-lactate dehydrogenase of Thermus caldophilus GK24 and the deduced amino-acid sequence of the enzyme. Kunai K; Machida M; Matsuzawa H; Ohta T Eur J Biochem; 1986 Oct; 160(2):433-40. PubMed ID: 3533539 [TBL] [Abstract][Full Text] [Related]
13. Allosteric effect of fructose 1,6-bisphosphate on the conformation of NAD+ as bound to L-lactate dehydrogenase from Thermus caldophilus GK24. Machida M; Yokoyama S; Matsuzawa H; Miyazawa T; Ohta T J Biol Chem; 1985 Dec; 260(30):16143-7. PubMed ID: 4066707 [TBL] [Abstract][Full Text] [Related]
14. Allosteric activation of L-lactate dehydrogenase analyzed by hybrid enzymes with effector-sensitive and -insensitive subunits. Fushinobu S; Kamata K; Iwata S; Sakai H; Ohta T; Matsuzawa H J Biol Chem; 1996 Oct; 271(41):25611-6. PubMed ID: 8810336 [TBL] [Abstract][Full Text] [Related]
15. T and R states in the crystals of bacterial L-lactate dehydrogenase reveal the mechanism for allosteric control. Iwata S; Kamata K; Yoshida S; Minowa T; Ohta T Nat Struct Biol; 1994 Mar; 1(3):176-85. PubMed ID: 7656036 [TBL] [Abstract][Full Text] [Related]
16. Fructose 1,6-bisphosphate-dependent L-lactate dehydrogenase from Thermus aquaticus YT-1, an extreme thermophile: activation by citrate and modification reagents and comparison with Thermus caldophilus GK24 L-lactate dehydrogenase. Machida M; Matsuzawa H; Ohta T J Biochem; 1985 Mar; 97(3):899-909. PubMed ID: 4019440 [TBL] [Abstract][Full Text] [Related]
17. Crystal structure of non-allosteric L-lactate dehydrogenase from Lactobacillus pentosus at 2.3 A resolution: specific interactions at subunit interfaces. Uchikoba H; Fushinobu S; Wakagi T; Konno M; Taguchi H; Matsuzawa H Proteins; 2002 Feb; 46(2):206-14. PubMed ID: 11807949 [TBL] [Abstract][Full Text] [Related]
18. Some Lactobacillus L-lactate dehydrogenases exhibit comparable catalytic activities for pyruvate and oxaloacetate. Arai K; Kamata T; Uchikoba H; Fushinobu S; Matsuzawa H; Taguchi H J Bacteriol; 2001 Jan; 183(1):397-400. PubMed ID: 11114942 [TBL] [Abstract][Full Text] [Related]
19. Molecular basis of allosteric activation of bacterial L-lactate dehydrogenase. Iwata S; Ohta T J Mol Biol; 1993 Mar; 230(1):21-7. PubMed ID: 8450537 [TBL] [Abstract][Full Text] [Related]
20. Allosteric activation in Bacillus stearothermophilus lactate dehydrogenase investigated by an X-ray crystallographic analysis of a mutant designed to prevent tetramerization of the enzyme. Cameron AD; Roper DI; Moreton KM; Muirhead H; Holbrook JJ; Wigley DB J Mol Biol; 1994 May; 238(4):615-25. PubMed ID: 8176749 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]