These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 27815997)

  • 1. Rapid and efficient crossing blood-brain barrier: Hydrophobic drug delivery system based on propionylated amylose helix nanoclusters.
    Gao W; Liu Y; Jing G; Li K; Zhao Y; Sha B; Wang Q; Wu D
    Biomaterials; 2017 Jan; 113():133-144. PubMed ID: 27815997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomedical Application of Polymers: A Case Study of Non-CNS Drugs Becoming CNS Acting Drugs.
    Saganuwan SA
    Cent Nerv Syst Agents Med Chem; 2018 Jan; 18(1):32-38. PubMed ID: 28828968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drug delivery to the CNS and polymeric nanoparticulate carriers.
    Costantino L
    Future Med Chem; 2010 Nov; 2(11):1681-701. PubMed ID: 21428839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upconversion Nanoparticle-Based Strategy for Crossing the Blood-Brain Barrier to Treat the Central Nervous System Disease.
    Fu L; Chung R; Shi B
    Methods Mol Biol; 2019; 2054():263-282. PubMed ID: 31482461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanodelivery systems for overcoming limited transportation of therapeutic molecules through the blood-brain barrier.
    Kim KT; Lee HS; Lee JJ; Park EK; Lee BS; Lee JY; Bae JS
    Future Med Chem; 2018 Nov; 10(22):2659-2674. PubMed ID: 30499740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PLGA nanoparticles prepared by nano-emulsion templating using low-energy methods as efficient nanocarriers for drug delivery across the blood-brain barrier.
    Fornaguera C; Dols-Perez A; Calderó G; García-Celma MJ; Camarasa J; Solans C
    J Control Release; 2015 Aug; 211():134-43. PubMed ID: 26057857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanomedicine as a non-invasive strategy for drug delivery across the blood brain barrier.
    Tam VH; Sosa C; Liu R; Yao N; Priestley RD
    Int J Pharm; 2016 Dec; 515(1-2):331-342. PubMed ID: 27769885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surfactants, not size or zeta-potential influence blood-brain barrier passage of polymeric nanoparticles.
    Voigt N; Henrich-Noack P; Kockentiedt S; Hintz W; Tomas J; Sabel BA
    Eur J Pharm Biopharm; 2014 May; 87(1):19-29. PubMed ID: 24607790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The targeted delivery of cancer drugs across the blood-brain barrier: chemical modifications of drugs or drug-nanoparticles?
    Juillerat-Jeanneret L
    Drug Discov Today; 2008 Dec; 13(23-24):1099-106. PubMed ID: 18848640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of transport of doxorubicin bound to nanoparticles across the blood-brain barrier.
    Wohlfart S; Khalansky AS; Gelperina S; Begley D; Kreuter J
    J Control Release; 2011 Aug; 154(1):103-7. PubMed ID: 21616104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization, in Vivo Evaluation, and Molecular Modeling of Different Propofol-Cyclodextrin Complexes To Assess Their Drug Delivery Potential at the Blood-Brain Barrier Level.
    Shityakov S; Salmas RE; Durdagi S; Salvador E; Pápai K; Yáñez-Gascón MJ; Pérez-Sánchez H; Puskás I; Roewer N; Förster C; Broscheit JA
    J Chem Inf Model; 2016 Oct; 56(10):1914-1922. PubMed ID: 27589557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Essentials and Perspectives of Computational Modelling Assistance for CNS-oriented Nanoparticle-based Drug Delivery Systems.
    Kisała J; Hęclik KI; Pogocki K; Pogocki D
    Curr Med Chem; 2018; 25(42):5894-5913. PubMed ID: 29768999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amphiphilic HPMA-LMA copolymers increase the transport of Rhodamine 123 across a BBB model without harming its barrier integrity.
    Hemmelmann M; Metz VV; Koynov K; Blank K; Postina R; Zentel R
    J Control Release; 2012 Oct; 163(2):170-7. PubMed ID: 22981565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation on mechanisms of glycopeptide nanoparticles for drug delivery across the blood-brain barrier.
    Tosi G; Fano RA; Bondioli L; Badiali L; Benassi R; Rivasi F; Ruozi B; Forni F; Vandelli MA
    Nanomedicine (Lond); 2011 Apr; 6(3):423-36. PubMed ID: 21542682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quaternary ammonium beta-cyclodextrin nanoparticles for enhancing doxorubicin permeability across the in vitro blood-brain barrier.
    Gil ES; Li J; Xiao H; Lowe TL
    Biomacromolecules; 2009 Mar; 10(3):505-16. PubMed ID: 19216528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoparticle transport across the blood brain barrier.
    Grabrucker AM; Ruozi B; Belletti D; Pederzoli F; Forni F; Vandelli MA; Tosi G
    Tissue Barriers; 2016; 4(1):e1153568. PubMed ID: 27141426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of non-endothelial cells on the penetration of nanoparticles through the blood brain barrier.
    Moura RP; Almeida A; Sarmento B
    Prog Neurobiol; 2017 Dec; 159():39-49. PubMed ID: 28899762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel lactoferrin-modified β-cyclodextrin nanocarrier for brain-targeting drug delivery.
    Ye Y; Sun Y; Zhao H; Lan M; Gao F; Song C; Lou K; Li H; Wang W
    Int J Pharm; 2013 Dec; 458(1):110-7. PubMed ID: 24126038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nano-enabled delivery systems across the blood-brain barrier.
    Hwang SR; Kim K
    Arch Pharm Res; 2014 Jan; 37(1):24-30. PubMed ID: 24170511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. β-cyclodextrin-poly(β-amino ester) nanoparticles for sustained drug delivery across the blood-brain barrier.
    Gil ES; Wu L; Xu L; Lowe TL
    Biomacromolecules; 2012 Nov; 13(11):3533-41. PubMed ID: 23066958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.