These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 27816193)

  • 1. Application and characterization of electroactive membranes based on carbon nanotubes and zerovalent iron nanoparticles.
    Yanez H JE; Wang Z; Lege S; Obst M; Roehler S; Burkhardt CJ; Zwiener C
    Water Res; 2017 Jan; 108():78-85. PubMed ID: 27816193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effectiveness and adsorption mechanism of iron-carbon nanotube composites for removing phosphate from aqueous environments.
    Adil S; Kim JO
    Chemosphere; 2023 Feb; 313():137629. PubMed ID: 36565757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical carbon nanotube filter oxidative performance as a function of surface chemistry.
    Gao G; Vecitis CD
    Environ Sci Technol; 2011 Nov; 45(22):9726-34. PubMed ID: 21967752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of airborne Ag/CNT hybrid nanoparticles using an aerosol process and their application to antimicrobial air filtration.
    Jung JH; Hwang GB; Lee JE; Bae GN
    Langmuir; 2011 Aug; 27(16):10256-64. PubMed ID: 21751779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of Vertically-Aligned Carbon Nanotubes from Langmuir-Blodgett Films Deposited Fe Nanoparticles on Al2O3/Al/SiO2/Si Substrate.
    Takagiwa S; Kanasugi O; Nakamura K; Kushida M
    J Nanosci Nanotechnol; 2016 Apr; 16(4):3289-94. PubMed ID: 27451619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of Fe doping on adsorption of CO2/N2 within carbon nanotubes: a density functional theory study with dispersion corrections.
    Du AJ; Sun CH; Zhu ZH; Lu GQ; Rudolph V; Smith SC
    Nanotechnology; 2009 Sep; 20(37):375701. PubMed ID: 19706942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The tortoise versus the hare - Possible advantages of microparticulate zerovalent iron (mZVI) over nanoparticulate zerovalent iron (nZVI) in aerobic degradation of contaminants.
    Ma J; He D; Collins RN; He C; Waite TD
    Water Res; 2016 Nov; 105():331-340. PubMed ID: 27639342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo simulation of intercalated carbon nanotubes.
    Mykhailenko O; Matsui D; Prylutskyy Y; Le Normand F; Eklund P; Scharff P
    J Mol Model; 2007 Jan; 13(1):283-7. PubMed ID: 17033783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: a review.
    Gupta VK; Kumar R; Nayak A; Saleh TA; Barakat MA
    Adv Colloid Interface Sci; 2013 Jun; 193-194():24-34. PubMed ID: 23579224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrocatalytic water treatment using carbon nanotube filters modified with metal oxides.
    Yang SY; Vecitis CD; Park H
    Environ Sci Pollut Res Int; 2019 Jan; 26(2):1036-1043. PubMed ID: 28132189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous adsorption and reduction of U(VI) on reduced graphene oxide-supported nanoscale zerovalent iron.
    Sun Y; Ding C; Cheng W; Wang X
    J Hazard Mater; 2014 Sep; 280():399-408. PubMed ID: 25194557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ar/O
    Ali S; Shah IA; Ahmad A; Nawab J; Huang H
    Sci Total Environ; 2019 Mar; 655():1270-1278. PubMed ID: 30577119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of ferrate by carbon nanotube for enhanced degradation of bromophenols: Kinetics, products, and involvement of Fe(V)/Fe(IV).
    Sun S; Jiang J; Qiu L; Pang S; Li J; Liu C; Wang L; Xue M; Ma J
    Water Res; 2019 Jun; 156():1-8. PubMed ID: 30897545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Situ Derivatization of an Intrinsic Iron Impurity as a Surface-Confined Iron(II)tris(2,2'-bipyridine) Complex on MWCNT and Its Application to Selective Electrochemical Sensing of DNA's Purine Bases.
    Mayuri P; Kumar AS
    Langmuir; 2015 Jun; 31(21):5945-51. PubMed ID: 25978298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous adsorption and dechlorination of 2,4-dichlorophenol by Pd/Fe nanoparticles with multi-walled carbon nanotube support.
    Xu J; Lv X; Li J; Li Y; Shen L; Zhou H; Xu X
    J Hazard Mater; 2012 Jul; 225-226():36-45. PubMed ID: 22609387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wet catalyst-support films for production of vertically aligned carbon nanotubes.
    Alvarez NT; Hamilton CE; Pint CL; Orbaek A; Yao J; Frosinini AL; Barron AR; Tour JM; Hauge RH
    ACS Appl Mater Interfaces; 2010 Jul; 2(7):1851-6. PubMed ID: 20540507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous Dechlorination and Advanced Oxidation Using Electrically Conductive Carbon Nanotube Membranes.
    Lee HJ; Zhang N; Ganzoury MA; Wu Y; de Lannoy CF
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34084-34092. PubMed ID: 34270203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of palladized carbon nanotubes encapsulated iron composites: highly efficient dechlorination for trichloroethylene and low corrosion of nanoiron.
    Wang X; Wang W; Lowry G; Li X; Guo Y; Li T
    R Soc Open Sci; 2018 Jun; 5(6):172242. PubMed ID: 30110440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Static and dynamic removal of aquatic natural organic matter by carbon nanotubes.
    Ajmani GS; Cho HH; Abbott Chalew TE; Schwab KJ; Jacangelo JG; Huang H
    Water Res; 2014 Aug; 59():262-70. PubMed ID: 24810742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Platinum nanoparticles-doped sol-gel/carbon nanotubes composite electrochemical sensors and biosensors.
    Yang M; Yang Y; Liu Y; Shen G; Yu R
    Biosens Bioelectron; 2006 Jan; 21(7):1125-31. PubMed ID: 15885999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.