These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 27816376)

  • 21. Experimental study on using water mist containing potassium compounds to suppress methane/air explosions.
    Liu Z; Zhong X; Zhang Q; Lu C
    J Hazard Mater; 2020 Jul; 394():122561. PubMed ID: 32248030
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Explosive decomposition of ethylene oxide at elevated condition: effect of ignition energy, nitrogen dilution, and turbulence.
    Pekalski AA; Zevenbergen JF; Braithwaite M; Lemkowitz SM; Pasman HJ
    J Hazard Mater; 2005 Feb; 118(1-3):19-34. PubMed ID: 15721525
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Auto-ignition and upper explosion limit of rich propane-air mixtures at elevated pressures.
    Norman F; Van den Schoor F; Verplaetsen F
    J Hazard Mater; 2006 Sep; 137(2):666-71. PubMed ID: 16716499
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Performance evaluation of a gasoline vapor sampling method.
    Russo PJ; Florky GR; Agopsowicz DE
    Am Ind Hyg Assoc J; 1987 Jun; 48(6):528-31. PubMed ID: 3618465
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Explosion Performance of Al Powder-Liquid Fuel Mixtures under Different Ambient Conditions.
    Yao J; Bai C; Zhang C
    ACS Omega; 2022 Sep; 7(36):32489-32495. PubMed ID: 36119970
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The upper explosion limit of lower alkanes and alkenes in air at elevated pressures and temperatures.
    Van den Schoor F; Verplaetsen F
    J Hazard Mater; 2006 Jan; 128(1):1-9. PubMed ID: 16154265
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of N
    Luo Z; Wei C; Wang T; Su B; Cheng F; Liu C; Wang Y
    J Hazard Mater; 2021 Feb; 403():123843. PubMed ID: 33264924
    [TBL] [Abstract][Full Text] [Related]  

  • 28. THE MECHANISM OF AERIAL DISINFECTION BY GLYCOLS AND OTHER CHEMICAL AGENTS : II. AN ANALYSIS OF THE FACTORS GOVERNING THE EFFICIENCY OF CHEMICAL DISINFECTION OF THE AIR.
    Puck TT
    J Exp Med; 1947 May; 85(6):741-57. PubMed ID: 19871647
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Explosion characteristics of synthesised biogas at various temperatures.
    Dupont L; Accorsi A
    J Hazard Mater; 2006 Aug; 136(3):520-5. PubMed ID: 16466853
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Propagation rules of shock waves in confined space under different initial pressure environments.
    Wang FQ; Wang Q; Wang YJ; Li ZM; Li R; Li XC; Yang LA; Lu JW
    Sci Rep; 2022 Aug; 12(1):14352. PubMed ID: 35999350
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Explosion characteristics for Li-ion battery electrolytes at elevated temperatures.
    Henriksen M; Vaagsaether K; Lundberg J; Forseth S; Bjerketvedt D
    J Hazard Mater; 2019 Jun; 371():1-7. PubMed ID: 30844645
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gas emissions and engine behavior when gasoline-alcohol mixtures are used.
    Arapatsakos CI; Karkanis AN; Sparis PD
    Environ Technol; 2003 Sep; 24(9):1069-77. PubMed ID: 14599140
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of nitromethane concentration on ignition energy and explosion parameters in gaseous nitromethane/air mixtures.
    Zhang Q; Li W; Lin DC; He N; Duan Y
    J Hazard Mater; 2011 Jan; 185(2-3):756-62. PubMed ID: 20965653
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of turbulent flow on the explosion parameters of micro- and nano-aluminum powder-air mixtures.
    Liu X; Zhang Q
    J Hazard Mater; 2015 Dec; 299():603-17. PubMed ID: 26276701
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experimental Study on the Explosion Characteristics of CH
    Wang F; Chen J; Wen X; Hu Q
    ACS Omega; 2020 Dec; 5(47):30495-30501. PubMed ID: 33283098
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigation on the Explosion Characteristics of an Aluminum Dust-Diethyl Ether-Air Mixture.
    Yao N; Bai C; Wang L; Liu N
    ACS Omega; 2021 Jul; 6(29):18868-18875. PubMed ID: 34337226
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Explosion impacts during transport of hazardous cargo: GIS-based characterization of overpressure impacts and delineation of flammable zones for ammonia.
    Inanloo B; Tansel B
    J Environ Manage; 2015 Jun; 156():1-9. PubMed ID: 25781067
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The quantitative studies on gas explosion suppression by an inert rock dust deposit.
    Song Y; Zhang Q
    J Hazard Mater; 2018 Jul; 353():62-69. PubMed ID: 29635175
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental study of flammability limits of natural gas-air mixture.
    Liao SY; Cheng Q; Jiang DM; Gao J
    J Hazard Mater; 2005 Mar; 119(1-3):81-4. PubMed ID: 15752851
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Risk Assessment of Liquefied Petroleum Gas Explosion in a Limited Space.
    Liang H; Wang T; Luo Z; Wang X; Kang X; Deng J
    ACS Omega; 2021 Sep; 6(38):24683-24692. PubMed ID: 34604650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.