These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 27816456)

  • 1. The disruption of two salt bridges of the cold-active xylanase XynGR40 results in an increase in activity, but a decrease in thermostability.
    Wang G; Wu J; Lin J; Ye X; Yao B
    Biochem Biophys Res Commun; 2016 Dec; 481(1-2):139-145. PubMed ID: 27816456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel cold-active xylanase gene from the environmental DNA of goat rumen contents: direct cloning, expression and enzyme characterization.
    Wang G; Luo H; Wang Y; Huang H; Shi P; Yang P; Meng K; Bai Y; Yao B
    Bioresour Technol; 2011 Feb; 102(3):3330-6. PubMed ID: 21106368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural insight into potential cold adaptation mechanism through a psychrophilic glycoside hydrolase family 10 endo-β-1,4-xylanase.
    Zheng Y; Li Y; Liu W; Chen CC; Ko TP; He M; Xu Z; Liu M; Luo H; Guo RT; Yao B; Ma Y
    J Struct Biol; 2016 Mar; 193(3):206-211. PubMed ID: 26719223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the thermostability and catalytic efficiency of GH11 xylanase PjxA by adding disulfide bridges.
    Teng C; Jiang Y; Xu Y; Li Q; Li X; Fan G; Xiong K; Yang R; Zhang C; Ma R; Zhu Y; Li J; Wang C
    Int J Biol Macromol; 2019 May; 128():354-362. PubMed ID: 30682487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the structural basis for the difference in thermostability displayed by family 10 xylanases.
    Xie H; Flint J; Vardakou M; Lakey JH; Lewis RJ; Gilbert HJ; Dumon C
    J Mol Biol; 2006 Jun; 360(1):157-67. PubMed ID: 16762367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering increased thermostability in the GH-10 endo-1,4-β-xylanase from Thermoascus aurantiacus CBMAI 756.
    de Souza AR; de Araújo GC; Zanphorlin LM; Ruller R; Franco FC; Torres FA; Mertens JA; Bowman MJ; Gomes E; Da Silva R
    Int J Biol Macromol; 2016 Dec; 93(Pt A):20-26. PubMed ID: 27554938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-step combined focused epPCR and saturation mutagenesis for thermostability evolution of a new cold-active xylanase.
    Acevedo JP; Reetz MT; Asenjo JA; Parra LP
    Enzyme Microb Technol; 2017 May; 100():60-70. PubMed ID: 28284313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering the thermostability of Trichoderma reesei endo-1,4-beta-xylanase II by combination of disulphide bridges.
    Xiong H; Fenel F; Leisola M; Turunen O
    Extremophiles; 2004 Oct; 8(5):393-400. PubMed ID: 15278768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Recent advances in structures and relative enzyme properties of xylanase].
    Yang HM; Yao B; Fan YL
    Sheng Wu Gong Cheng Xue Bao; 2005 Jan; 21(1):6-11. PubMed ID: 15859321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amino acid substitutions in the N-terminus, cord and α-helix domains improved the thermostability of a family 11 xylanase XynR8.
    Xue H; Zhou J; You C; Huang Q; Lu H
    J Ind Microbiol Biotechnol; 2012 Sep; 39(9):1279-88. PubMed ID: 22584821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving the catalytic performance of a GH11 xylanase by rational protein engineering.
    Cheng YS; Chen CC; Huang JW; Ko TP; Huang Z; Guo RT
    Appl Microbiol Biotechnol; 2015 Nov; 99(22):9503-10. PubMed ID: 26088174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increase in catalytic activity and thermostability of the xylanase A of Streptomyces lividans 1326 by site-specific mutagenesis.
    Moreau A; Shareck F; Kluepfel D; Morosoli R
    Enzyme Microb Technol; 1994 May; 16(5):420-4. PubMed ID: 7764794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of Trichoderma reesei xylanase II thermal stability by serine to threonine surface mutations.
    Zouari Ayadi D; Hmida Sayari A; Ben Hlima H; Ben Mabrouk S; Mezghani M; Bejar S
    Int J Biol Macromol; 2015 Jan; 72():163-70. PubMed ID: 25158289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N- and C-terminal truncations of a GH10 xylanase significantly increase its activity and thermostability but decrease its SDS resistance.
    Zheng F; Huang J; Liu X; Hu H; Long L; Chen K; Ding S
    Appl Microbiol Biotechnol; 2016 Apr; 100(8):3555-65. PubMed ID: 26621803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of alkalophilicity of an alkaline xylanase Xyn11A-LC from Bacillus sp. SN5 by random mutation and Glu135 saturation mutagenesis.
    Bai W; Cao Y; Liu J; Wang Q; Jia Z
    BMC Biotechnol; 2016 Nov; 16(1):77. PubMed ID: 27825339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexibility of active center affects thermostability and activity of Penicillium canescens xylanase E.
    Dotsenko A; Sinelnikov I; Rozhkova A; Zorov I; Sinitsyn A
    Biochimie; 2024 Jan; 216():83-89. PubMed ID: 37820990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directed evolution of the thermostable xylanase from Thermomyces lanuginosus.
    Stephens DE; Rumbold K; Permaul K; Prior BA; Singh S
    J Biotechnol; 2007 Jan; 127(3):348-54. PubMed ID: 16893583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of thermostability and activity of Trichoderma reesei endo-xylanase Xyn III on insoluble substrates.
    Matsuzawa T; Kaneko S; Yaoi K
    Appl Microbiol Biotechnol; 2016 Sep; 100(18):8043-51. PubMed ID: 27138202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation of a novel cold-active family 11 Xylanase from the filamentous fungus Bispora antennata and deletion of its N-terminal amino acids on thermostability.
    Liu Q; Wang Y; Luo H; Wang L; Shi P; Huang H; Yang P; Yao B
    Appl Biochem Biotechnol; 2015 Jan; 175(2):925-36. PubMed ID: 25351632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production and characterization of hemicellulase activities from Trichoderma harzianum strain T4.
    Franco PF; Ferreira HM; Filho EX
    Biotechnol Appl Biochem; 2004 Dec; 40(Pt 3):255-9. PubMed ID: 14763904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.