These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
301 related articles for article (PubMed ID: 27816507)
1. NAD Kennedy BE; Sharif T; Martell E; Dai C; Kim Y; Lee PW; Gujar SA Pharmacol Res; 2016 Dec; 114():274-283. PubMed ID: 27816507 [TBL] [Abstract][Full Text] [Related]
2. Extreme Vulnerability of IDH1 Mutant Cancers to NAD+ Depletion. Tateishi K; Wakimoto H; Iafrate AJ; Tanaka S; Loebel F; Lelic N; Wiederschain D; Bedel O; Deng G; Zhang B; He T; Shi X; Gerszten RE; Zhang Y; Yeh JJ; Curry WT; Zhao D; Sundaram S; Nigim F; Koerner MVA; Ho Q; Fisher DE; Roider EM; Kemeny LV; Samuels Y; Flaherty KT; Batchelor TT; Chi AS; Cahill DP Cancer Cell; 2015 Dec; 28(6):773-784. PubMed ID: 26678339 [TBL] [Abstract][Full Text] [Related]
3. Nicotinamide adenine dinucleotide (NAD+): essential redox metabolite, co-substrate and an anti-cancer and anti-ageing therapeutic target. Griffiths HBS; Williams C; King SJ; Allison SJ Biochem Soc Trans; 2020 Jun; 48(3):733-744. PubMed ID: 32573651 [TBL] [Abstract][Full Text] [Related]
4. Pharmacological Inhibitors of NAD Biosynthesis as Potential An ticancer Agents. Lucas S; Soave C; Nabil G; Ahmed ZSO; Chen G; El-Banna HA; Dou QP; Wang J Recent Pat Anticancer Drug Discov; 2017; 12(3):190-207. PubMed ID: 28637419 [TBL] [Abstract][Full Text] [Related]
5. Nicotinamide phosphoribosyltransferase (Nampt) in carcinogenesis: new clinical opportunities. Chen H; Wang S; Zhang H; Nice EC; Huang C Expert Rev Anticancer Ther; 2016 Aug; 16(8):827-38. PubMed ID: 27186719 [TBL] [Abstract][Full Text] [Related]
6. The nicotinamide phosphoribosyltransferase: a molecular link between metabolism, inflammation, and cancer. Gallí M; Van Gool F; Rongvaux A; Andris F; Leo O Cancer Res; 2010 Jan; 70(1):8-11. PubMed ID: 20028851 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of nicotinamide phosphoribosyltransferase (NAMPT) as a therapeutic strategy in cancer. Sampath D; Zabka TS; Misner DL; O'Brien T; Dragovich PS Pharmacol Ther; 2015 Jul; 151():16-31. PubMed ID: 25709099 [TBL] [Abstract][Full Text] [Related]
8. Discovery of Dual Function Agents That Exhibit Anticancer Activity via Catastrophic Nicotinamide Adenine Dinucleotide Depletion. Fu Y; Huang Y; Zhou C; Li X; Dong G; Huang M; Ding J; Sheng C J Med Chem; 2023 Dec; 66(24):16694-16703. PubMed ID: 38060985 [TBL] [Abstract][Full Text] [Related]
9. Targeting the vulnerability to NAD Takao S; Chien W; Madan V; Lin DC; Ding LW; Sun QY; Mayakonda A; Sudo M; Xu L; Chen Y; Jiang YY; Gery S; Lill M; Park E; Senapedis W; Baloglu E; Müschen M; Koeffler HP Leukemia; 2018 Mar; 32(3):616-625. PubMed ID: 28904384 [TBL] [Abstract][Full Text] [Related]
10. Advances in NAD-Lowering Agents for Cancer Treatment. Ghanem MS; Monacelli F; Nencioni A Nutrients; 2021 May; 13(5):. PubMed ID: 34068917 [TBL] [Abstract][Full Text] [Related]
12. Identification of the Nicotinamide Salvage Pathway as a New Toxification Route for Antimetabolites. Buonvicino D; Mazzola F; Zamporlini F; Resta F; Ranieri G; Camaioni E; Muzzi M; Zecchi R; Pieraccini G; Dölle C; Calamante M; Bartolucci G; Ziegler M; Stecca B; Raffaelli N; Chiarugi A Cell Chem Biol; 2018 Apr; 25(4):471-482.e7. PubMed ID: 29478906 [TBL] [Abstract][Full Text] [Related]
13. Hyperbaric Oxygen Reduces Infarction Volume and Hemorrhagic Transformation Through ATP/NAD Hu Q; Manaenko A; Bian H; Guo Z; Huang JL; Guo ZN; Yang P; Tang J; Zhang JH Stroke; 2017 Jun; 48(6):1655-1664. PubMed ID: 28495827 [TBL] [Abstract][Full Text] [Related]
14. Nicotinamide adenine dinucleotide metabolism as an attractive target for drug discovery. Khan JA; Forouhar F; Tao X; Tong L Expert Opin Ther Targets; 2007 May; 11(5):695-705. PubMed ID: 17465726 [TBL] [Abstract][Full Text] [Related]
15. Targeting NAMPT for Therapeutic Intervention in Cancer and Inflammation: Structure-Based Drug Design and Biological Screening. Pulla VK; Sriram DS; Soni V; Viswanadha S; Sriram D; Yogeeswari P Chem Biol Drug Des; 2015 Oct; 86(4):881-94. PubMed ID: 25850461 [TBL] [Abstract][Full Text] [Related]
16. NAMPT as a Therapeutic Target against Stroke. Wang P; Miao CY Trends Pharmacol Sci; 2015 Dec; 36(12):891-905. PubMed ID: 26538317 [TBL] [Abstract][Full Text] [Related]
17. Anti-proliferation effect of APO866 on C6 glioblastoma cells by inhibiting nicotinamide phosphoribosyltransferase. Zhang LY; Liu LY; Qie LL; Ling KN; Xu LH; Wang F; Fang SH; Lu YB; Hu H; Wei EQ; Zhang WP Eur J Pharmacol; 2012 Jan; 674(2-3):163-70. PubMed ID: 22119381 [TBL] [Abstract][Full Text] [Related]
19. NAD- and NADPH-Contributing Enzymes as Therapeutic Targets in Cancer: An Overview. Pramono AA; Rather GM; Herman H; Lestari K; Bertino JR Biomolecules; 2020 Feb; 10(3):. PubMed ID: 32111066 [TBL] [Abstract][Full Text] [Related]
20. Identification of novel resistance mechanisms to NAMPT inhibition via the de novo NAD Guo J; Lam LT; Longenecker KL; Bui MH; Idler KB; Glaser KB; Wilsbacher JL; Tse C; Pappano WN; Huang TH Biochem Biophys Res Commun; 2017 Sep; 491(3):681-686. PubMed ID: 28756225 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]