These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 27816675)

  • 21. Normalization of genomic DNA using duplex-specific nuclease.
    Shagina I; Bogdanova E; Mamedov IZ; Lebedev Y; Lukyanov S; Shagin D
    Biotechniques; 2010 Jun; 48(6):455-9. PubMed ID: 20569220
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PILER-CR: fast and accurate identification of CRISPR repeats.
    Edgar RC
    BMC Bioinformatics; 2007 Jan; 8():18. PubMed ID: 17239253
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improved repeat identification and masking in Dipterans.
    Smith CD; Edgar RC; Yandell MD; Smith DR; Celniker SE; Myers EW; Karpen GH
    Gene; 2007 Mar; 389(1):1-9. PubMed ID: 17137733
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sequence complexity profiles of prokaryotic genomic sequences: a fast algorithm for calculating linguistic complexity.
    Troyanskaya OG; Arbell O; Koren Y; Landau GM; Bolshoy A
    Bioinformatics; 2002 May; 18(5):679-88. PubMed ID: 12050064
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A repetitive sequence assembler based on next-generation sequencing.
    Lian S; Tu Y; Wang Y; Chen X; Wang L
    Genet Mol Res; 2016 Jul; 15(3):. PubMed ID: 27525861
    [TBL] [Abstract][Full Text] [Related]  

  • 26. TRASH: Tandem Repeat Annotation and Structural Hierarchy.
    Wlodzimierz P; Hong M; Henderson IR
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37162382
    [TBL] [Abstract][Full Text] [Related]  

  • 27. RAP: a new computer program for de novo identification of repeated sequences in whole genomes.
    Campagna D; Romualdi C; Vitulo N; Del Favero M; Lexa M; Cannata N; Valle G
    Bioinformatics; 2005 Mar; 21(5):582-8. PubMed ID: 15374857
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sequence repetitiveness quantification and de novo repeat detection by weighted k-mer coverage.
    Feng C; Dai M; Liu Y; Chen M
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32591772
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2.
    Novák P; Neumann P; Macas J
    Nat Protoc; 2020 Nov; 15(11):3745-3776. PubMed ID: 33097925
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Complete Sequence Construction of the Highly Repetitive Ribosomal RNA Gene Repeats in Eukaryotes Using Whole Genome Sequence Data.
    Agrawal S; Ganley AR
    Methods Mol Biol; 2016; 1455():161-81. PubMed ID: 27576718
    [TBL] [Abstract][Full Text] [Related]  

  • 31. AlcoR: alignment-free simulation, mapping, and visualization of low-complexity regions in biological data.
    Silva JM; Qi W; Pinho AJ; Pratas D
    Gigascience; 2022 Dec; 12():. PubMed ID: 38091509
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computation and visualization of degenerate repeats in complete genomes.
    Kurtz S; Ohlebusch E; Schleiermacher C; Stoye J; Giegerich R
    Proc Int Conf Intell Syst Mol Biol; 2000; 8():228-38. PubMed ID: 10977084
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient computation of all perfect repeats in genomic sequences of up to half a gigabyte, with a case study on the human genome.
    Becher V; Deymonnaz A; Heiber P
    Bioinformatics; 2009 Jul; 25(14):1746-53. PubMed ID: 19451169
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 'Genomemark': detecting word periodicity in biological sequences.
    Fadiel A; Eichenbaum KD; Hamza A
    J Biomol Struct Dyn; 2006 Feb; 23(4):457-64. PubMed ID: 16363880
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Detecting Periodicities in Eukaryotic Genomes by Ramanujan Fourier Transform.
    Zhao J; Wang J; Jiang H
    J Comput Biol; 2018 Sep; 25(9):963-975. PubMed ID: 29963923
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Parallelism in evolution of highly repetitive DNAs in sibling species.
    Mravinac B; Plohl M
    Mol Biol Evol; 2010 Aug; 27(8):1857-67. PubMed ID: 20203289
    [TBL] [Abstract][Full Text] [Related]  

  • 37. TEclass--a tool for automated classification of unknown eukaryotic transposable elements.
    Abrusán G; Grundmann N; DeMester L; Makalowski W
    Bioinformatics; 2009 May; 25(10):1329-30. PubMed ID: 19349283
    [TBL] [Abstract][Full Text] [Related]  

  • 38. OMWSA: detection of DNA repeats using moving window spectral analysis.
    Du L; Zhou H; Yan H
    Bioinformatics; 2007 Mar; 23(5):631-3. PubMed ID: 17267428
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nucleotide sequence and characterization of a repetitive DNA element from the genome of Bordetella pertussis with characteristics of an insertion sequence.
    McLafferty MA; Harcus DR; Hewlett EL
    J Gen Microbiol; 1988 Aug; 134(8):2297-306. PubMed ID: 2908119
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prototypic sequences for human repetitive DNA.
    Jurka J; Walichiewicz J; Milosavljevic A
    J Mol Evol; 1992 Oct; 35(4):286-91. PubMed ID: 1404414
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.