These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 27816702)

  • 1. Neural Correlates of User-initiated Motor Success and Failure - A Brain-Computer Interface Perspective.
    Yazmir B; Reiner M
    Neuroscience; 2018 May; 378():100-112. PubMed ID: 27816702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. I act, therefore I err: EEG correlates of success and failure in a virtual throwing game.
    Yazmir B; Reiner M
    Int J Psychophysiol; 2017 Dec; 122():32-41. PubMed ID: 28193497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring brain potentials to guide neurorehabilitation of tracking impairments.
    Yazmir B; Reiner M
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():983-988. PubMed ID: 28813949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural Signatures of Interface Errors in Remote Agent Manipulation.
    Yazmir B; Reiner M
    Neuroscience; 2022 Mar; 486():62-76. PubMed ID: 33639224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a robust asynchronous brain-switch using ErrP-based error correction.
    Yousefi R; Rezazadeh Sereshkeh A; Chau T
    J Neural Eng; 2019 Nov; 16(6):066042. PubMed ID: 31571608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Embodying Others in Immersive Virtual Reality: Electro-Cortical Signatures of Monitoring the Errors in the Actions of an Avatar Seen from a First-Person Perspective.
    Pavone EF; Tieri G; Rizza G; Tidoni E; Grisoni L; Aglioti SM
    J Neurosci; 2016 Jan; 36(2):268-79. PubMed ID: 26758821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motor priming in virtual reality can augment motor-imagery training efficacy in restorative brain-computer interaction: a within-subject analysis.
    Vourvopoulos A; Bermúdez I Badia S
    J Neuroeng Rehabil; 2016 Aug; 13(1):69. PubMed ID: 27503007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factors that affect error potentials during a grasping task: toward a hybrid natural movement decoding BCI.
    Omedes J; Schwarz A; Müller-Putz GR; Montesano L
    J Neural Eng; 2018 Aug; 15(4):046023. PubMed ID: 29714718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar.
    Luu TP; He Y; Brown S; Nakagame S; Contreras-Vidal JL
    J Neural Eng; 2016 Jun; 13(3):036006. PubMed ID: 27064824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain negativity as an indicator of predictive error processing: the contribution of visual action effect monitoring.
    Joch M; Hegele M; Maurer H; Müller H; Maurer LK
    J Neurophysiol; 2017 Jul; 118(1):486-495. PubMed ID: 28446578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decoding agency attribution using single trial error-related brain potentials.
    Gomez-Andres A; Cerda-Company X; Cucurell D; Cunillera T; Rodríguez-Fornells A
    Psychophysiology; 2024 Jan; 61(1):e14434. PubMed ID: 37668293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Error-related EEG potentials generated during simulated brain-computer interaction.
    Ferrez PW; del R Millan J
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):923-9. PubMed ID: 18334383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asynchronous Detection of Trials Onset from Raw EEG Signals.
    Lopez-Gordo MA; Grima Murcia MD; Padilla P; Pelayo F; Fernandez E
    Int J Neural Syst; 2016 Nov; 26(7):1650034. PubMed ID: 27377663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of Error-Related Potentials in Stroke Patients from EEG Using an Artificial Neural Network.
    Usama N; Niazi IK; Dremstrup K; Jochumsen M
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response compatibility and the relationship between event-related potentials and the timing of a motor response.
    Goodin DS; Aminoff MJ; Chequer RS; Ortiz TA
    J Neurophysiol; 1996 Dec; 76(6):3705-13. PubMed ID: 8985868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of sensorimotor areas in early detection of motor errors: An EEG and TMS study.
    Maffongelli L; Ferrari E; Bartoli E; Campus C; Olivier E; Fadiga L; D'Ausilio A
    Behav Brain Res; 2020 Jan; 378():112248. PubMed ID: 31614184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing motor imagery in brain-computer interface training: Psychological and neurophysiological correlates.
    Vasilyev A; Liburkina S; Yakovlev L; Perepelkina O; Kaplan A
    Neuropsychologia; 2017 Mar; 97():56-65. PubMed ID: 28167121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feasibility of Automatic Error Detect-and-Undo System in Human Intracortical Brain-Computer Interfaces.
    Even-Chen N; Stavisky SD; Pandarinath C; Nuyujukian P; Blabe CH; Hochberg LR; Henderson JM; Shenoy KV
    IEEE Trans Biomed Eng; 2018 Aug; 65(8):1771-1784. PubMed ID: 29989931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using a hybrid brain computer interface and virtual reality system to monitor and promote cortical reorganization through motor activity and motor imagery training.
    Bermúdez i Badia S; García Morgade A; Samaha H; Verschure PF
    IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):174-81. PubMed ID: 23204287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Task-dependent signal variations in EEG error-related potentials for brain-computer interfaces.
    Iturrate I; Montesano L; Minguez J
    J Neural Eng; 2013 Apr; 10(2):026024. PubMed ID: 23528750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.