BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 27816827)

  • 1. In silico designing breast cancer peptide vaccine for binding to MHC class I and II: A molecular docking study.
    Mahdavi M; Moreau V
    Comput Biol Chem; 2016 Dec; 65():110-116. PubMed ID: 27816827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of B and T cell epitope based peptide vaccine from IGF-1 receptor in breast cancer.
    Mahdavi M; Moreau V; Kheirollahi M
    J Mol Graph Model; 2017 Aug; 75():316-321. PubMed ID: 28628857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico design of discontinuous peptides representative of B and T-cell epitopes from HER2-ECD as potential novel cancer peptide vaccines.
    Manijeh M; Mehrnaz K; Violaine M; Hassan M; Abbas J; Mohammad R
    Asian Pac J Cancer Prev; 2013; 14(10):5973-81. PubMed ID: 24289611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting promiscuous antigenic T cell epitopes of Mycobacterium tuberculosis mymA operon proteins binding to MHC Class I and Class II molecules.
    Saraav I; Pandey K; Sharma M; Singh S; Dutta P; Bhardwaj A; Sharma S
    Infect Genet Evol; 2016 Oct; 44():182-189. PubMed ID: 27389362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metadherin peptides containing CD4(+) and CD8(+) T cell epitopes as a therapeutic vaccine candidate against cancer.
    Dhiman G; Lohia N; Jain S; Baranwal M
    Microbiol Immunol; 2016 Sep; 60(9):646-52. PubMed ID: 27554419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EpiDOCK: a molecular docking-based tool for MHC class II binding prediction.
    Atanasova M; Patronov A; Dimitrov I; Flower DR; Doytchinova I
    Protein Eng Des Sel; 2013 Oct; 26(10):631-4. PubMed ID: 23661105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence conservation analysis and in silico human leukocyte antigen-peptide binding predictions for the Mtb72F and M72 tuberculosis candidate vaccine antigens.
    Mortier MC; Jongert E; Mettens P; Ruelle JL
    BMC Immunol; 2015 Oct; 16():63. PubMed ID: 26493839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-based prediction of MHC-peptide association: algorithm comparison and application to cancer vaccine design.
    Schiewe AJ; Haworth IS
    J Mol Graph Model; 2007 Oct; 26(3):667-75. PubMed ID: 17493854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytosolic targeting of hen egg lysozyme gives rise to a short-lived protein presented by class I but not class II major histocompatibility complex molecules.
    Calin-Laurens V; Forquet F; Mottez E; Kanellopoulos J; Godeau F; Kourilsky P; Gerlier D; Rabourdin-Combe C
    Eur J Immunol; 1991 Mar; 21(3):761-9. PubMed ID: 2009914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach.
    Nielsen M; Lundegaard C; Worning P; Hvid CS; Lamberth K; Buus S; Brunak S; Lund O
    Bioinformatics; 2004 Jun; 20(9):1388-97. PubMed ID: 14962912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peptide binding by class I and class II MHC molecules.
    Batalia MA; Collins EJ
    Biopolymers; 1997; 43(4):281-302. PubMed ID: 9316393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recognition of core and flanking amino acids of MHC class II-bound peptides by the T cell receptor.
    Sant'Angelo DB; Robinson E; Janeway CA; Denzin LK
    Eur J Immunol; 2002 Sep; 32(9):2510-20. PubMed ID: 12207335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CD4+ T-cell activation for immunotherapy of malignancies using Ii-Key/MHC class II epitope hybrid vaccines.
    Xu M; Kallinteris NL; von Hofe E
    Vaccine; 2012 Apr; 30(18):2805-10. PubMed ID: 22386748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunization of cancer patients with HER-2/neu-derived peptides demonstrating high-affinity binding to multiple class II alleles.
    Salazar LG; Fikes J; Southwood S; Ishioka G; Knutson KL; Gooley TA; Schiffman K; Disis ML
    Clin Cancer Res; 2003 Nov; 9(15):5559-65. PubMed ID: 14654536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A general and efficient approach for NMR studies of peptide dynamics in class I MHC peptide binding grooves.
    Insaidoo FK; Zajicek J; Baker BM
    Biochemistry; 2009 Oct; 48(41):9708-10. PubMed ID: 19772349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. T cell antigen receptor recognition of antigen-presenting molecules.
    Rossjohn J; Gras S; Miles JJ; Turner SJ; Godfrey DI; McCluskey J
    Annu Rev Immunol; 2015; 33():169-200. PubMed ID: 25493333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptide binding motifs for MHC class I and II molecules.
    Biddison WE; Martin R
    Curr Protoc Immunol; 2001 May; Appendix 1():Appendix 1I. PubMed ID: 18432645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward the prediction of class I and II mouse major histocompatibility complex-peptide-binding affinity: in silico bioinformatic step-by-step guide using quantitative structure-activity relationships.
    Hattotuwagama CK; Doytchinova IA; Flower DR
    Methods Mol Biol; 2007; 409():227-45. PubMed ID: 18450004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porcine major histocompatibility complex (MHC) class I molecules and analysis of their peptide-binding specificities.
    Pedersen LE; Harndahl M; Rasmussen M; Lamberth K; Golde WT; Lund O; Nielsen M; Buus S
    Immunogenetics; 2011 Dec; 63(12):821-34. PubMed ID: 21739336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Forcing tumor cells to present their own tumor antigens to the immune system: a necessary design for an efficient tumor immunotherapy.
    Humphreys RE; Hillman GG; von Hofe E; Xu M
    Cell Mol Immunol; 2004 Jun; 1(3):180-5. PubMed ID: 16219165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.