These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
86 related articles for article (PubMed ID: 27816890)
1. Modulating hydrogen-bond basicity within the context of protein-ligand binding: A case study with thrombin inhibitors that reveals a dominating role for desolvation. Nasief NN; Said AM; Hangauer D Eur J Med Chem; 2017 Jan; 125():975-991. PubMed ID: 27816890 [TBL] [Abstract][Full Text] [Related]
2. Ligand binding cooperativity: Bioisosteric replacement of CO with SO2 among thrombin inhibitors. Said AM; Hangauer DG Bioorg Med Chem Lett; 2016 Aug; 26(16):3850-4. PubMed ID: 27445170 [TBL] [Abstract][Full Text] [Related]
3. Enhancement of hydrophobic interactions and hydrogen bond strength by cooperativity: synthesis, modeling, and molecular dynamics simulations of a congeneric series of thrombin inhibitors. Muley L; Baum B; Smolinski M; Freindorf M; Heine A; Klebe G; Hangauer DG J Med Chem; 2010 Mar; 53(5):2126-35. PubMed ID: 20148533 [TBL] [Abstract][Full Text] [Related]
4. Binding cooperativity between a ligand carbonyl group and a hydrophobic side chain can be enhanced by additional H-bonds in a distance dependent manner: A case study with thrombin inhibitors. Said AM; Hangauer DG Eur J Med Chem; 2015; 96():405-24. PubMed ID: 25912673 [TBL] [Abstract][Full Text] [Related]
5. Impact of ligand and protein desolvation on ligand binding to the S1 pocket of thrombin. Biela A; Khayat M; Tan H; Kong J; Heine A; Hangauer D; Klebe G J Mol Biol; 2012 May; 418(5):350-66. PubMed ID: 22366545 [TBL] [Abstract][Full Text] [Related]
6. Comparative molecular modeling analysis of-5-amidinoindole and benzamidine binding to thrombin and trypsin: specific H-bond formation contributes to high 5-amidinoindole potency and selectivity for thrombin and factor Xa. Zhou Y; Johnson ME J Mol Recognit; 1999; 12(4):235-41. PubMed ID: 10440994 [TBL] [Abstract][Full Text] [Related]
7. Profiling the structural determinants for the selectivity of representative factor-Xa and thrombin inhibitors using combined ligand-based and structure-based approaches. Bhunia SS; Roy KK; Saxena AK J Chem Inf Model; 2011 Aug; 51(8):1966-85. PubMed ID: 21761917 [TBL] [Abstract][Full Text] [Related]
8. Compounds binding to the S2-S3 pockets of thrombin. Nilsson M; Hämäläinen M; Ivarsson M; Gottfries J; Xue Y; Hansson S; Isaksson R; Fex T J Med Chem; 2009 May; 52(9):2708-15. PubMed ID: 19371038 [TBL] [Abstract][Full Text] [Related]
9. Factorising ligand affinity: a combined thermodynamic and crystallographic study of trypsin and thrombin inhibition. Dullweber F; Stubbs MT; Musil D; Stürzebecher J; Klebe G J Mol Biol; 2001 Oct; 313(3):593-614. PubMed ID: 11676542 [TBL] [Abstract][Full Text] [Related]
10. Think twice: understanding the high potency of bis(phenyl)methane inhibitors of thrombin. Baum B; Muley L; Heine A; Smolinski M; Hangauer D; Klebe G J Mol Biol; 2009 Aug; 391(3):552-64. PubMed ID: 19520086 [TBL] [Abstract][Full Text] [Related]
11. A fluorine scan at the catalytic center of thrombin: C--F, C--OH, and C--OMe bioisosterism and fluorine effects on pKa and log D values. Schweizer E; Hoffmann-Röder A; Schärer K; Olsen JA; Fäh C; Seiler P; Obst-Sander U; Wagner B; Kansy M; Diederich F ChemMedChem; 2006 Jun; 1(6):611-21. PubMed ID: 16892401 [TBL] [Abstract][Full Text] [Related]
12. Determinants of ligand binding to cAMP-dependent protein kinase. Hünenberger PH; Helms V; Narayana N; Taylor SS; McCammon JA Biochemistry; 1999 Feb; 38(8):2358-66. PubMed ID: 10029529 [TBL] [Abstract][Full Text] [Related]
13. A novel serine protease inhibition motif involving a multi-centered short hydrogen bonding network at the active site. Katz BA; Elrod K; Luong C; Rice MJ; Mackman RL; Sprengeler PA; Spencer J; Hataye J; Janc J; Link J; Litvak J; Rai R; Rice K; Sideris S; Verner E; Young W J Mol Biol; 2001 Apr; 307(5):1451-86. PubMed ID: 11292354 [TBL] [Abstract][Full Text] [Related]
14. Elucidation of Nonadditive Effects in Protein-Ligand Binding Energies: Thrombin as a Case Study. Calabrò G; Woods CJ; Powlesland F; Mey AS; Mulholland AJ; Michel J J Phys Chem B; 2016 Jun; 120(24):5340-50. PubMed ID: 27248478 [TBL] [Abstract][Full Text] [Related]
16. Structure-based understanding of ligand affinity using human thrombin as a model system. Nienaber VL; Mersinger LJ; Kettner CA Biochemistry; 1996 Jul; 35(30):9690-9. PubMed ID: 8703940 [TBL] [Abstract][Full Text] [Related]
17. Non-additivity of functional group contributions in protein-ligand binding: a comprehensive study by crystallography and isothermal titration calorimetry. Baum B; Muley L; Smolinski M; Heine A; Hangauer D; Klebe G J Mol Biol; 2010 Apr; 397(4):1042-54. PubMed ID: 20156458 [TBL] [Abstract][Full Text] [Related]
18. Kinase inhibitors and the case for CH...O hydrogen bonds in protein-ligand binding. Pierce AC; Sandretto KL; Bemis GW Proteins; 2002 Dec; 49(4):567-76. PubMed ID: 12402365 [TBL] [Abstract][Full Text] [Related]
19. Regulation of protein-ligand binding affinity by hydrogen bond pairing. Chen D; Oezguen N; Urvil P; Ferguson C; Dann SM; Savidge TC Sci Adv; 2016 Mar; 2(3):e1501240. PubMed ID: 27051863 [TBL] [Abstract][Full Text] [Related]
20. Binding modes of 6,7 di-substituted 4-anilinoquinoline-3-carbonitriles to EGFR. Akula N; Bhalla J; Sridhar J; Pattabiraman N Bioorg Med Chem Lett; 2004 Jul; 14(13):3397-400. PubMed ID: 15177440 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]