These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
301 related articles for article (PubMed ID: 27817094)
1. Covalent binding of placental derived proteins to silk fibroin improves schwann cell adhesion and proliferation. Schuh CM; Monforte X; Hackethal J; Redl H; Teuschl AH J Mater Sci Mater Med; 2016 Dec; 27(12):188. PubMed ID: 27817094 [TBL] [Abstract][Full Text] [Related]
2. In vitro and in vivo evaluation of silk fibroin functionalized with GABA and allopregnanolone for Schwann cell and neuron survival. Gennari CG; Cilurzo F; Mitro N; Caruso D; Minghetti P; Magnaghi V Regen Med; 2018 Mar; 13(2):141-157. PubMed ID: 29160149 [TBL] [Abstract][Full Text] [Related]
3. Spatially controlled delivery of neurotrophic factors in silk fibroin-based nerve conduits for peripheral nerve repair. Lin YC; Ramadan M; Hronik-Tupaj M; Kaplan DL; Philips BJ; Sivak W; Rubin JP; Marra KG Ann Plast Surg; 2011 Aug; 67(2):147-55. PubMed ID: 21712696 [TBL] [Abstract][Full Text] [Related]
4. Fabrication and characterization of electrospun laminin-functionalized silk fibroin/poly(ethylene oxide) nanofibrous scaffolds for peripheral nerve regeneration. Rajabi M; Firouzi M; Hassannejad Z; Haririan I; Zahedi P J Biomed Mater Res B Appl Biomater; 2018 May; 106(4):1595-1604. PubMed ID: 28805042 [TBL] [Abstract][Full Text] [Related]
5. Cell-laden hydrogel constructs of hyaluronic acid, collagen, and laminin for neural tissue engineering. Suri S; Schmidt CE Tissue Eng Part A; 2010 May; 16(5):1703-16. PubMed ID: 20136524 [TBL] [Abstract][Full Text] [Related]
6. Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro. Yang Y; Chen X; Ding F; Zhang P; Liu J; Gu X Biomaterials; 2007 Mar; 28(9):1643-52. PubMed ID: 17188747 [TBL] [Abstract][Full Text] [Related]
7. A New Preparation Method for Anisotropic Silk Fibroin Nerve Guidance Conduits and Its Evaluation In Vitro and in a Rat Sciatic Nerve Defect Model. Teuschl AH; Schuh C; Halbweis R; Pajer K; Márton G; Hopf R; Mosia S; Rünzler D; Redl H; Nógrádi A; Hausner T Tissue Eng Part C Methods; 2015 Sep; 21(9):945-57. PubMed ID: 25819471 [TBL] [Abstract][Full Text] [Related]
8. Bridging peripheral nerve defects with a tissue engineered nerve graft composed of an in vitro cultured nerve equivalent and a silk fibroin-based scaffold. Tang X; Xue C; Wang Y; Ding F; Yang Y; Gu X Biomaterials; 2012 May; 33(15):3860-7. PubMed ID: 22364696 [TBL] [Abstract][Full Text] [Related]
9. Functional recovery guided by an electrospun silk fibroin conduit after sciatic nerve injury in rats. Park SY; Ki CS; Park YH; Lee KG; Kang SW; Kweon HY; Kim HJ J Tissue Eng Regen Med; 2015 Jan; 9(1):66-76. PubMed ID: 23086833 [TBL] [Abstract][Full Text] [Related]
10. Chitosan/silk fibroin-based, Schwann cell-derived extracellular matrix-modified scaffolds for bridging rat sciatic nerve gaps. Gu Y; Zhu J; Xue C; Li Z; Ding F; Yang Y; Gu X Biomaterials; 2014 Feb; 35(7):2253-63. PubMed ID: 24360577 [TBL] [Abstract][Full Text] [Related]
11. Electrospun PLGA-silk fibroin-collagen nanofibrous scaffolds for nerve tissue engineering. Wang G; Hu X; Lin W; Dong C; Wu H In Vitro Cell Dev Biol Anim; 2011 Mar; 47(3):234-40. PubMed ID: 21181450 [TBL] [Abstract][Full Text] [Related]
12. Electrospun silk-polyaniline conduits for functional nerve regeneration in rat sciatic nerve injury model. Das S; Sharma M; Saharia D; Sarma KK; Muir EM; Bora U Biomed Mater; 2017 Aug; 12(4):045025. PubMed ID: 28632137 [TBL] [Abstract][Full Text] [Related]
13. Skin derived precursor Schwann cell-generated acellular matrix modified chitosan/silk scaffolds for bridging rat sciatic nerve gap. Zhu C; Huang J; Xue C; Wang Y; Wang S; Bao S; Chen R; Li Y; Gu Y Neurosci Res; 2018 Oct; 135():21-31. PubMed ID: 29288689 [TBL] [Abstract][Full Text] [Related]
14. Silk-tropoelastin protein films for nerve guidance. White JD; Wang S; Weiss AS; Kaplan DL Acta Biomater; 2015 Mar; 14():1-10. PubMed ID: 25481743 [TBL] [Abstract][Full Text] [Related]
15. [Recent progress on silk fibroin as tissue engineering biomaterials]. Wang H; Li M Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Feb; 22(2):192-5. PubMed ID: 18365617 [TBL] [Abstract][Full Text] [Related]
16. Melanin incorporated electroactive and antioxidant silk fibroin nanofibrous scaffolds for nerve tissue engineering. Nune M; Manchineella S; T G; K S N Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():17-25. PubMed ID: 30423699 [TBL] [Abstract][Full Text] [Related]
17. Modulation of myelin formation by combined high affinity with extracellular matrix structure of electrospun silk fibroin nanoscaffolds. Liu S; Niu C; Xu Z; Wang Y; Liang Y; Zhao Y; Zhao Y; Yang Y J Biomater Sci Polym Ed; 2019 Aug; 30(12):1068-1082. PubMed ID: 31104582 [TBL] [Abstract][Full Text] [Related]
18. Silk fibroin enhances peripheral nerve regeneration by improving vascularization within nerve conduits. Wang C; Jia Y; Yang W; Zhang C; Zhang K; Chai Y J Biomed Mater Res A; 2018 Jul; 106(7):2070-2077. PubMed ID: 29575774 [TBL] [Abstract][Full Text] [Related]
19. Repair of rat sciatic nerve gap by a silk fibroin-based scaffold added with bone marrow mesenchymal stem cells. Yang Y; Yuan X; Ding F; Yao D; Gu Y; Liu J; Gu X Tissue Eng Part A; 2011 Sep; 17(17-18):2231-44. PubMed ID: 21542668 [TBL] [Abstract][Full Text] [Related]